分析 (1)因?yàn)楫?dāng)x=-1時(shí),f(x)有極大值,當(dāng)x=3時(shí),f(x)有極小值,所以把x=-1和3代入導(dǎo)數(shù),導(dǎo)數(shù)都等于0,就可得到關(guān)于a,b,c的兩個(gè)等式,再根據(jù)極大值等于7,又得到一個(gè)關(guān)于a,b,c的等式,三個(gè)等式聯(lián)立,即可求出a,b,c的值.
(2)先求出函數(shù)f(x)的單調(diào)區(qū)間,從而求出函數(shù)的最大值和最小值.
解答 解:(1)∴f(x)=x3+ax2+bx+c
∵f′(x)=3x2+2ax+b
而x=-1和x=3是極值點(diǎn),
所以$\left\{\begin{array}{l}{f′(-1)=3-2a+b=0}\\{f′(3)=27+6a+b=0}\end{array}\right.$,解之得:a=-3,b=-9
又f(-1)=-1+a-b+c=-1-3+9+c=7,故得c=2,
∴a=-3,b=-9,c=2;
(2)由(1)可知f(x)=x3-3x2-9x+2,
∴f′(x)=3x2-6x-9=3(x-3)(x+1),
令f′(x)>0,解得:x>3或x<-1,
令f′(x)<0,解得:-1<x<3,
∴函數(shù)f(x)在[-2,-1)遞增,在(-1,0]遞減,
∴f(x)最大值=f(x)極大值=f(-1)=7,
而f(-2)=-12,f(0)=2,
∴f(x)最小值=f(-2)=-12.
點(diǎn)評 本題主要考查導(dǎo)數(shù)在求函數(shù)的極值中的應(yīng)用,做題時(shí)要細(xì)心.理解極值與導(dǎo)數(shù)的對應(yīng)關(guān)系及極值的判斷規(guī)則是解題的關(guān)鍵,本題是導(dǎo)數(shù)應(yīng)用題,常見題型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a4+a6>2a5 | B. | a4+a6<2a5 | ||
C. | a4+a6=2a5 | D. | a4+a6與2a5的大小與a有關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i>9 | B. | i>=9 | C. | i<=9 | D. | i<9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | α=kπ-$\frac{π}{3}$(k∈Z) | B. | α=kπ-$\frac{π}{6}$(k∈Z) | C. | α=kπ+$\frac{π}{3}$(k∈Z) | D. | α=kπ+$\frac{π}{6}$(k∈Z) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com