【題目】函數(shù)f(x)=﹣x2+2x﹣3,x∈[0,2]的值域是
【答案】[﹣3,﹣2]
【解析】解:函數(shù)f(x)=﹣x2+2x﹣3,的開(kāi)口向下,對(duì)稱軸為:x=1∈[0,2].
函數(shù)f(x)=﹣x2+2x﹣3,x∈[0,2]的最大值為:f(1)=﹣2;最小值為:f(0)=﹣3.
函數(shù)的值域?yàn)椋篬﹣3,﹣2].
所以答案是:[﹣3,﹣2].
【考點(diǎn)精析】本題主要考查了函數(shù)的值域和二次函數(shù)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最。ù螅⿺(shù),這個(gè)數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實(shí)質(zhì)是相同的;當(dāng)時(shí),拋物線開(kāi)口向上,函數(shù)在上遞減,在上遞增;當(dāng)時(shí),拋物線開(kāi)口向下,函數(shù)在上遞增,在上遞減才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 通項(xiàng)公式為 . (Ⅰ)計(jì)算f(1),f(2),f(3)的值;
(Ⅱ)比較f(n)與1的大小,并用數(shù)學(xué)歸納法證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+ax﹣lnx,a∈R
(1)若函數(shù)f(x)在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍
(2)令g(x)=f(x)﹣x2 , 是否存在實(shí)數(shù)a,當(dāng)x∈(0,e]時(shí),函數(shù)g(x)的最小值是3?若存在,求出a的值,若不存在,說(shuō)明理由
(3)當(dāng)x∈(0,e]時(shí),求證:e2x2﹣ x>(x+1)lnx.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)在定義域(0,+∞)上是單調(diào)函數(shù),若對(duì)任意x∈(0,+∞),都有 ,則 的值是( )
A.5
B.6
C.7
D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點(diǎn)F到雙曲線 =1的漸近線的距離為1,過(guò)焦點(diǎn)F且斜率為k的直線與拋物線C交于A,B兩點(diǎn),若 ,則k= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某石化集團(tuán)獲得了某地深海油田區(qū)塊的開(kāi)采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分幾口井,取得了地質(zhì)資料.進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來(lái)布置井位進(jìn)行全面勘探,由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用,勘探初期數(shù)據(jù)資料見(jiàn)如表:
(參考公式和計(jì)算結(jié)果:
, , , )
(1)1~6號(hào)舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求的值,并估計(jì)的預(yù)報(bào)值.
(2)現(xiàn)準(zhǔn)備勘探新井,若通過(guò)1,3,5,7號(hào)并計(jì)算出的, 的值(, 精確到0.01)相比于(1)中的, ,值之差不超過(guò)10%,則使用位置最接近的已有舊井,否則在新位置打開(kāi),請(qǐng)判斷可否使用舊井?
(3)設(shè)出油量與勘探深度的比值不低于20的勘探井稱為優(yōu)質(zhì)井,那么在原有6口井中任意勘探4口井,求勘探優(yōu)質(zhì)井?dāng)?shù)的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,側(cè)面為等邊三角形且垂直于底面,
.
(1)證明: ;
(2)若直線與平面所成角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C的中心在原點(diǎn),焦點(diǎn)在軸上,離心率等于,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn)。
(1)求橢圓C的標(biāo)準(zhǔn)方程。
(2)已知點(diǎn)在橢圓C上,點(diǎn)A、B是橢圓C上不同于P、Q的兩個(gè)動(dòng)點(diǎn),且滿足: 。試問(wèn):直線AB的斜率是否為定值?請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=﹣ x3+bx2+cx+bc.
(1)若函數(shù)f(x)在x=1處有極值﹣ ,試確定b、c的值;
(2)若b=1,f(x)存在單調(diào)遞增區(qū)間,求c的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com