分析 (1)求出函數(shù)的導數(shù),根據(jù)f′(1)=0,求出a的值,檢驗即可;
(2)問題轉化為(x-1)ex+a≥0在區(qū)間[2,4]上恒成立,記g(x)=(x-1)ex+a,根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.
解答 解:(1)f′(x)=$\frac{(x-1{)e}^{x}+a}{{x}^{2}}$,
∵f(x)在x=1時取極值,故f′(1)=0,解得:a=0,
a=0時,f′(x)=$\frac{(x-1{)e}^{x}}{{x}^{2}}$,
f(x)在x=1時取極值,
故a=0;
(2)∵函數(shù)f(x)在區(qū)間[2,4]上是單調(diào)遞增函數(shù),
∴f′(x)≥0在區(qū)間[2,4]上恒成立,
即(x-1)ex+a≥0在區(qū)間[2,4]上恒成立,
記g(x)=(x-1)ex+a,則g(x)min≥0,
g′(x)=xex,∵x∈[2,4],∴g′(x)>0,
故g(x)在[2,4]遞增,
故g(x)min=g(2)=e2+a≥0,
解得:a≥-e2,
故實數(shù)a的范圍是:a≥-e2.
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導數(shù)的應用以及分類討論思想,轉化思想,是一道中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{5}}}{5}$ | B. | $\frac{{2\sqrt{5}}}{5}$ | C. | $\frac{1}{5}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{12}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{a}<\frac{1}$ | B. | ac2>bc2 | C. | 2-a<2-b | D. | lga>lgb |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com