18.七名同學(xué)戰(zhàn)成一排照相,其中甲、乙二人相鄰,且丙、丁兩人不相鄰的不同排法總數(shù)為960.

分析 由題設(shè)中的條件知,可以先把甲、乙必須相鄰,可先將兩者綁定,又丙、丁不相鄰,可把甲、乙看作是一個人,與丙、丁之外的3個人作一個全排列,由于此4個元素隔開了5個空,再由插空法將丙、丁兩人插入5個空,由分析過程知,此題應(yīng)分為三步完成,由計數(shù)原理計算出結(jié)果即可

解答 解:由題意,第一步將甲、乙綁定,兩者的站法有2種,第二步將此兩人看作一個整體,與除丙丁之外的3人看作4個元素做一個全排列有A44種站法,此時隔開了5個空,第三步將丙丁兩人插入5個空,排法種數(shù)為A52
則不同的排法種數(shù)為2×A44×A52=960.
故答案為:960.

點(diǎn)評 本題考查排列、組合及簡單計數(shù)問題,解題的關(guān)鍵是掌握并理解計數(shù)原理,計數(shù)時的一些技巧在解題時很有用,如本題中所用到的綁定,與插空,這些技巧都是針對某一類計數(shù)問題的,題后應(yīng)注意總結(jié)一下,不同的計數(shù)問題中所采用的技巧,將這些技巧與具體的背景結(jié)合起來,熟練掌握這些技巧.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若x,y為非零實數(shù),代數(shù)式$\frac{{x}^{2}}{{y}^{2}}$+$\frac{{y}^{2}}{{x}^{2}}$-8($\frac{x}{y}$+$\frac{y}{x}$)+15的最小值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.命題:兩條直線垂直同一個平面,那么這兩條直線平行.將這個命題用符號語言表示為:若直線m⊥平面α,直線n⊥平面α,則m∥n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=9x-a•3x+1+a2(x∈[0,1],a∈R),記f(x)的最大值為g(a).
(Ⅰ)求g(a)解析式;
(Ⅱ)若對于任意t∈[-2,2],任意a∈R,不等式g(a)≥-m2+tm恒成立,求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖是一個棱錐的正視圖和側(cè)視圖,則該棱錐的俯視圖不可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{x}{e^x}$-axlnx(a∈R)在x=1處的切線方程為y=bx+1+$\frac{1}{e}$(b∈R).
(1)求a,b的值;
(2)證明:f(x)<$\frac{2}{e}$.
(3)若正實數(shù)m,n滿足mn=1,證明:$\frac{1}{{e}^{m-1}}$+$\frac{1}{{e}^{n-1}}$<2(m+n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知橢圓$\frac{x^2}{4}+\frac{y^2}{b^2}$=1(0<b<2)的左、右焦點(diǎn)分別為F1,F(xiàn)2,直線l過F2且與橢圓相交于不同的兩點(diǎn)A,B,那么△ABF1的周長( 。
A.是定值4
B.是定值8
C.不是定值,與直線l的傾斜角大小有關(guān)
D.不是定值,與b取值大小有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)m,n為兩條不同的直線,α為平面,則下列結(jié)論正確的是( 。
A.m⊥n,m∥α⇒n⊥αB.m⊥n,m⊥α⇒n∥αC.m∥n,m∥α⇒n∥αD.m∥n,m⊥α⇒n⊥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=log${\;}_{\frac{1}{3}}$cos(2x-$\frac{π}{3}$)的單調(diào)遞增區(qū)間為(kπ+$\frac{π}{6}$,kπ+$\frac{5π}{12}$)(k∈Z).

查看答案和解析>>

同步練習(xí)冊答案