考點(diǎn):分段函數(shù)的應(yīng)用,函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用換元法.先求出內(nèi)層的t=f(x)的范圍,再根據(jù)t的范圍,借助于函數(shù)f(x)性質(zhì),求y=f(t)的值域即為所求.
解答:
解:令t=f(x),由f(x)=
,得:
當(dāng)-2≤x≤1時(shí),t=
x2+1∈[1,2];當(dāng)1<x≤2時(shí),t=x-3∈[-2,-1],
所以要求函數(shù)y=f(f(x)),即求f(t)=
的值域,
當(dāng)-2≤t≤-1或t=1時(shí),f(t)=
+1∈[1,2];
當(dāng)1<t≤2時(shí),f(t)∈(-2,-1].
綜上,函數(shù)y=f(f(x))的值域是(-2,-1]∪[1,2].
故答案為(-2,-1]∪[1,2].
點(diǎn)評(píng):首先這是一道分段函數(shù)問題,要分段處理,同時(shí)求復(fù)合函數(shù)y=f(f(x))的值域,利用換元法使問題最終轉(zhuǎn)化為分段函數(shù)的值域問題.