【題目】設函數(shù).
(1)當時,討論函數(shù)的單調(diào)性;
(2)若對任意及任意, ,恒有成立,求實數(shù)的取值范圍.
【答案】(1)詳見解析;(2).
【解析】試題分析:
(1)由函數(shù)的導函數(shù)分類討論可得:
當時, 在定義域上是減函數(shù);
當時, 在, 上單調(diào)遞減,在上單調(diào)遞增;
當時, 在和上單調(diào)遞減,在上單調(diào)遞增.
(2)結合(1)的結論可得,構造函數(shù),討論可得.
試題解析:(1),
當,即時, , 在上是減函數(shù);
當,即時,令,得或;令,得;
當,即時,令,得或;令,得;
綜上,當時, 在定義域上是減函數(shù);
當時, 在, 上單調(diào)遞減,在上單調(diào)遞增;
當時, 在和上單調(diào)遞減,在上單調(diào)遞增.
(2)由(1)知,當時, 在上單調(diào)遞減,
當時, 有最大值,當時, 有最小值,
對任意,恒有, .
構造函數(shù),則,
, .
函數(shù)在上單調(diào)增.
, .
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線,圓.
(1)若拋物線的焦點在圓上,且為 和圓 的一個交點,求;
(2)若直線與拋物線和圓分別相切于點,求的最小值及相應的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設集合,若X是的子集,把X中所有元素的和稱為X的“容量”(規(guī)定空集的容量為0),若X的容量為奇(偶)數(shù),則稱X為的奇(偶)子集.
(1)寫出S4的所有奇子集;
(2)求證:的奇子集與偶子集個數(shù)相等;
(3)求證:當n≥3時,的所有奇子集的容量之和等于所有偶子集的容量之和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市統(tǒng)計局就2015年畢業(yè)大學生的月收入情況調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖所示,每個分組包括左端點,不包括右端點,如第一組表示.
(1)求畢業(yè)大學生月收入在的頻率;
(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);
(3)為了分析大學生的收入與所學專業(yè)、性別等方面的關系,必須按月收入再從這10000人中按分層抽樣方法抽出100人作進一步分析,則月收入在的這段應抽取多少人?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定點和直線上的動點,線段的垂直平分線交直線于點,設點的軌跡為曲線.
(I)求曲線的方程;
(II)直線交軸于點,交曲線于不同的兩點,點關于軸的對稱點為,點關于軸的對稱點為,求證:三點共線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù),….
(Ⅰ)判斷函數(shù)的單調(diào)性,并說明理由;
(Ⅱ)若,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大學生在開學季準備銷售一種文具套盒進行試創(chuàng)業(yè),在一個開學季內(nèi),每售出盒該產(chǎn)品獲利潤元;未售出的產(chǎn)品,每盒虧損元.根據(jù)歷史資料,得到開學季市場需求量的頻率分布直方圖,如圖所示,該同學為這個開學季購進了盒該產(chǎn)品,以(單位:盒, )表示這個開學季內(nèi)的市場需求量,(單位:元)表示這個開學季內(nèi)經(jīng)銷該產(chǎn)品的利潤.
(1)根據(jù)直方圖估計這個開學季內(nèi)市場需求量的中位數(shù);
(2)將表示為的函數(shù);
(3)根據(jù)直方圖估計利潤不少于元的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=a,an+1=2an+ (a,λ∈R).
(1)若λ=-2,數(shù)列{an}單調(diào)遞增,求實數(shù)a的取值范圍;
(2)若a=2,試寫出an≥2對任意的n∈N*成立的充要條件,并證明你的結論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com