17.已知圓C1的方程為x2+y2=m(m>0),圓C2的方程為x2+y2+6x-8y-11=0.
(1)若圓C1與圓C2相內(nèi)切,求實數(shù)m的值:
(2)求過點P(3,-4)且與圓C2相切的直線l的方程.

分析 (1)若圓C1與圓C2相內(nèi)切,圓心距等于半徑的差,即可求實數(shù)m的值:
(2)分類討論,利用圓心到直線的距離等于半徑,即可求過點P(3,-4)且與圓C2相切的直線l的方程.

解答 解:(1)圓C2的方程為x2+y2+6x-8y-11=0可化為(x+3)2+(y-4)2=36,
∴圓心距為5,
∴5=|6-$\sqrt{m}$|,
∴m=1或121;
(2)斜率不存在時,直線x=3,滿足題意;
斜率存在時,設(shè)過點P(3,-4)的直線方程為y+4=k(x-3),即kx-y-3k-4=0,
∴$\frac{|-6k-8|}{\sqrt{{k}^{2}+1}}$=6,∴k=-$\frac{7}{24}$,
∴直線方程為7x+24y+75=0,
綜上,直線方程為x=3或7x+24y+75=0.

點評 本題考查圓的方程,考查直線與圓的位置關(guān)系,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.則“x=2”是“x2-3x+2=0”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若直線l1:y=kx-2和直線l2:2x+y=4的交點在第一象限,則直線l1的傾斜角的范圍是( 。
A.($\frac{π}{6}$,$\frac{π}{4}$)B.($\frac{π}{4}$,$\frac{π}{2}$)C.($\frac{π}{4}$,$\frac{π}{2}$]D.($\frac{π}{4}$,$\frac{π}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知sinα,tanθ是方程5x2-7x-6=0的兩根,若3π<α<$\frac{7π}{2}$,求$\frac{sin(5π-α)cos(2π-α)cos(\frac{3π}{2}-α)-si{n}^{2}α}{cos(\frac{π}{2}-α)sin(-π-α)}$的值,求$\frac{2si{n}^{2}θ-3co{s}^{2}θ}{si{n}^{2}θ+2co{s}^{2}θ}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.己知橢圓方程C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),經(jīng)過點(1,$\frac{\sqrt{2}}{2}$),且兩焦點與短軸的一個端點構(gòu)成等腰直角三角形.
(1)求橢圓方程;
(2)過橢圓右頂點的兩條斜率乘積為-$\frac{1}{2}$的直線分別交橢圓于M,N兩點,試問:直線MN是否過定點?若過定點,請求出此定點,若不過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓C的離心率為$\frac{\sqrt{2}}{2}$,右焦點為F2(1,0),過點B(2,0)作直線交橢圓C于P,Q兩點,設(shè)直線PF2和QF2的斜率分別為k1,k1
(1)求證:k1+k2為定值;
(2)求△PF2Q面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.平面直角坐標(biāo)系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,左右焦點分別是F1,F(xiàn)2,以F1為圓心以3為半徑的圓與以F2為圓心以1為半徑的圓相交,且交點在橢圓C上.
 (I)求橢圓C的方程;
(II)設(shè)橢圓E:$\frac{{x}^{2}}{4{a}^{2}}$+$\frac{{y}^{2}}{4^{2}}$=1,P為橢圓C上任意一點,過點P的直線y=kx+m交橢圓E于A,B兩點.射線PO交橢圓E于點Q.
(i)求$\frac{|OQ|}{|OP|}$的值,(ii)求△ABQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=2x+3.?dāng)?shù)列{an}滿足a1=1,且an+1=f(an)(n∈N*),則該數(shù)列的通項公式為an=2n+1-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上任一點,F(xiàn)1,F(xiàn)2為橢圓的左、右焦點,求|PF1|的 最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案