分析 (1)由已知中函數(shù)的解析式,求出導(dǎo)函數(shù)的解析式,對(duì)m進(jìn)行分類討論,確定x在不同情況下導(dǎo)函數(shù)的符號(hào),進(jìn)而可得函數(shù)的單調(diào)遞增區(qū)間;
(2)問(wèn)題轉(zhuǎn)化為t<$\frac{x+1}{{e}^{x}-1}$+x,①,令g(x)=$\frac{x+1}{{e}^{x}-1}$+x,(x>0),根據(jù)函數(shù)的單調(diào)性求出t的最大整數(shù)值即可.
解答 解:(1)由f(x)=ex-mx,x∈R,得f'(x)=ex-m,
①當(dāng)m≤0時(shí),則f'(x)=ex-m>0對(duì)x∈R恒成立,
此時(shí)f(x)的單調(diào)遞增,遞增區(qū)間為(-∞,+∞);
②當(dāng)m>0時(shí),
由f'(x)=ex-m>0,得到x>lnm,
所以,m>0時(shí),f(x)的單調(diào)遞增區(qū)間是(lnm,+∞);
綜上,當(dāng)m≤0時(shí),f(x)的單調(diào)遞增區(qū)間為(-∞,+∞).
當(dāng)m>0時(shí),f(x)的單調(diào)遞增區(qū)間是(lnm,+∞);
(2)m=1時(shí),(t-x)(ex-1)<x+1,
x>0時(shí),ex-1>0,故t<$\frac{x+1}{{e}^{x}-1}$+x,①,
令g(x)=$\frac{x+1}{{e}^{x}-1}$+x,(x>0),則g′(x)=$\frac{{e}^{x}{(e}^{x}-x-2)}{{{(e}^{x}-1)}^{2}}$,
令h(x)=ex-x-2,則h′(x)=ex-1>0,(x>0),
函數(shù)h(x)在(0,+∞)遞增,
而h(1)<0,h(2)>0,
∴h(x)在(0,+∞)上存在唯一零點(diǎn),
即g′(x)在(0,+∞)上存在唯一零點(diǎn),
設(shè)此零點(diǎn)是x0,則x0∈(1,2),
x∈(0,x0)時(shí),g′(x)<0,x∈(x0,+∞)時(shí),g′(x)>0,
∴g(x)在(0,+∞)上的最小值是g(x0),
由g′(x0)=0得:${e}^{{x}_{0}}$=x0+2,
∴g(x0)=x0+1∈(2,3),
由于①式等價(jià)于t<g(x0),
故整數(shù)t的最大值是2.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的由于以及函數(shù)恒成立問(wèn)題,考查分類討論思想,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com