14.設(shè)函數(shù)f(x)=|x-1|+|x-2|.
(1)求函數(shù)y=f(x)的最小值;
(2)若不等式|a+b|+|a-b|≥|a|f(x),(a≠0,a、b∈R)恒成立,求實(shí)數(shù)x的取值范圍.

分析 (1)利用絕對值的意義,求函數(shù)y=f(x)的最小值;
(2)由題意可得|x-1|+|x-2|小于或等于$\frac{|a+b|+|a-b|}{|a|}$的最小值,而$\frac{|a+b|+|a-b|}{|a|}$的最小值等于2,故x的范圍即為不等式|x-1|+|x-2|≤2的解,根據(jù)數(shù)軸上的$\frac{1}{2}$、$\frac{5}{2}$對應(yīng)點(diǎn)到1和2對應(yīng)點(diǎn)的距離之和等于2,可得不等式的解集.

解答 解:(1)x≥2,f(x)≥1;
1<x<2,f(x)=1;
x≤1,f(x)=3-2x≥1,
∴函數(shù)y=f(x)的最小值為1;
(2)解:由題知,|x-1|+|x-2|≤$\frac{|a+b|+|a-b|}{|a|}$恒成立,
故|x-1|+|x-2|小于或等于 $\frac{|a+b|+|a-b|}{|a|}$的最小值.
∵|a+b|+|a-b|≥|a+b+a-b|=2|a|,當(dāng)且僅當(dāng) (a+b)(a-b)≥0 時取等號,
∴$\frac{|a+b|+|a-b|}{|a|}$的最小值等于2,
∴x的范圍即為不等式|x-1|+|x-2|≤2的解.
由于|x-1|+|x-2|表示數(shù)軸上的x對應(yīng)點(diǎn)到1和2對應(yīng)點(diǎn)的距離之和,
又由于數(shù)軸上的$\frac{1}{2}$、$\frac{5}{2}$對應(yīng)點(diǎn)到1和2對應(yīng)點(diǎn)的距離之和等于2,
故不等式的解集為[$\frac{1}{2}$,$\frac{5}{2}$].

點(diǎn)評 本題考查絕對值的意義,絕對值不等式的解法,判斷|x-1|+|x-2|表示數(shù)軸上的x對應(yīng)點(diǎn)到1和2對應(yīng)點(diǎn)的距離之和,是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=$\frac{x}{{{e^{2x}}}}$,(e=2.71828…是自然對數(shù)的底數(shù)).
(Ⅰ)求f(x)的單調(diào)區(qū)間及最大值;
(Ⅱ)設(shè)g(x)=$\frac{x}{{{e^{2x}}}}$+m,若g(x)在點(diǎn)(-$\frac{1}{2}$,g(-$\frac{1}{2}})}$)處的切線過點(diǎn)(1,3e),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖所示,四邊形ABCD為菱形,矩形A1ACC1⊥平面ABCD,且DA=2,AA1=3,∠ADC=$\frac{π}{3}$,E為線段A1C1的中點(diǎn),F(xiàn)為線段A1A上一點(diǎn).
(Ⅰ)證明:C1F⊥BD;
(Ⅱ)求二面角C-DE-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)a∈R,函數(shù)f(x)=ax2-lnx,g(x)=ex-ax.
(1)當(dāng)a=7時,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若f(x)•g(x)>0對x∈(0,+∞)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知f(x)=ex-ax2-2x+b(e為自然對數(shù)的底數(shù),a,b∈R).
(Ⅰ)設(shè)f′(x)為f(x)的導(dǎo)函數(shù),證明:當(dāng)a>0時,f′(x)的最小值小于0;
(Ⅱ)若a<0,f(x)>0恒成立,求符合條件的最小整數(shù)b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=ex-mx(e是自然對數(shù)的底數(shù),m∈R).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若m=1,且當(dāng)x>0時,(t-x)f′(x)<x+1恒成立,其中f′(x)為f(x)的導(dǎo)函數(shù),求整數(shù)t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x2-2ax+b(a,b∈R),記M是|f(x)|在區(qū)間[0,1]上的最大值.
(I)當(dāng)b=0且M=2時,求a的值;
(Ⅱ)若M≤$\frac{1}{2}$,證明0≤a≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.一位創(chuàng)業(yè)青年租用了一塊邊長為1百米的正方形田地ABCD來養(yǎng)蜂、產(chǎn)蜜與售蜜,他在正方形的邊BC,CD上分別取點(diǎn)E,F(xiàn)(不與正方形的頂點(diǎn)重合),連接AE,EF,F(xiàn)A,使得∠EAF=45°.現(xiàn)擬將圖中陰影部分規(guī)劃為蜂源植物生長區(qū),△AEF部分規(guī)劃為蜂巢區(qū),△CEF部分規(guī)劃為蜂蜜交易區(qū).若蜂源植物生長區(qū)的投入約為2×105元/百米2,蜂巢區(qū)與蜂蜜交易區(qū)的投入約為105元/百米2,則這三個區(qū)域的總投入最少需要多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若圓(x-a)2+(y-a)2=8上總存在兩個點(diǎn)到原點(diǎn)的距離為$\sqrt{2}$,則實(shí)數(shù)a的取值范圍是(  )
A.[-1,1]B.(-3,3)C.(-3,-1]∪[1,3)D.(-3,-1)∪(1,3)

查看答案和解析>>

同步練習(xí)冊答案