直線+=1與x,y軸交點(diǎn)的中點(diǎn)的軌跡方程________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知圓的方程為x2+y2-6x-8y=0,設(shè)該圓中過(guò)點(diǎn)M(3,5)的最長(zhǎng)弦、最短弦分別為AC、BD,則以點(diǎn)A、B、C、D為頂點(diǎn)的四邊形ABCD的面積為( )
A.10 B.20
C.30 D.40
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
斜率為的直線與雙曲線=1(a>0,b>0)恒有兩個(gè)公共點(diǎn),則雙曲線離心率的取值范圍是( )
A.[2,+∞) B.(,+∞)
C.(1,) D.(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
拋物線頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸正半軸,有且只有一條直線l過(guò)焦點(diǎn)與拋物線相交于A,B兩點(diǎn),且|AB|=1,則拋物線方程為_(kāi)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)動(dòng)點(diǎn)P在直線x-1=0上,O為坐標(biāo)原點(diǎn),以OP為直角邊,點(diǎn)O為直角頂點(diǎn)作等腰直角三角形OPQ,則動(dòng)點(diǎn)Q的軌跡是( )
A.橢圓 B.兩條平行直線
C.拋物線 D.雙曲線
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
過(guò)動(dòng)點(diǎn)M(x,y)引直線l:y=-1的垂線,垂足為A,O是原點(diǎn),直線MO與l交于點(diǎn)B,以AB為直徑的圓恒過(guò)點(diǎn)F(0,1).
(1)求動(dòng)點(diǎn)M的軌跡C的方程.
(2)一個(gè)具有標(biāo)準(zhǔn)方程的橢圓E與(1)中的曲線C在第一象限的交點(diǎn)為Q,橢圓E與曲線C在點(diǎn)Q處的切線互相垂直且橢圓E在Q處的切線被曲線C所截得的弦的中點(diǎn)橫坐標(biāo)為-,求橢圓E的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓+=1(a>b>0)與雙曲線-=1(m>0,n>0)有相同的焦點(diǎn)(-c,0)和(c,0),若c是a與m的等比中項(xiàng),n2是2m2與c2的等差中項(xiàng),則橢圓的離心率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)Sn為等比數(shù)列{an}的前n項(xiàng)和,已知3S3=a4-2,3S2=a3-2,則公比q等于( )
(A)3 (B)4 (C)5 (D)6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)數(shù)列{an}滿足a1=2,a2+a4=8,且對(duì)任意n∈N*,函數(shù)f(x)=(an-an+1+an+2)x+an+1cos x-an+2sin x滿足
f′=0.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=2(an+),求數(shù)列{bn}的前n項(xiàng)和Sn.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com