8.求下列函數(shù)的導(dǎo)數(shù):
(1)y=xe-x;
(2)y=ln(3x-2);
(3)y=$\frac{2-sinx}{cosx}$;
(4)f(x)=$\frac{1}{1-\sqrt{x}}$+$\frac{1}{1+\sqrt{x}}$.

分析 根據(jù)導(dǎo)數(shù)的運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則求導(dǎo)即可.

解答 解:(1)y′=e-x-xe-x;
(2)y′=$\frac{1}{3x-2}$(3x-2)′=$\frac{3}{3x-2}$;
(3)y′=($\frac{2-sinx}{cosx}$)′=$\frac{(2-sinx)′cosx-(2-sinx)cosx′}{co{s}^{2}x}$=$\frac{-co{s}^{2}x+2sinx-si{n}^{2}x}{co{s}^{2}x}$=$\frac{-1+2sinx}{co{s}^{2}x}$
(4)f(x)=$\frac{1}{1-\sqrt{x}}$+$\frac{1}{1+\sqrt{x}}$=$\frac{1+\sqrt{x}}{1-x}$+$\frac{1-\sqrt{x}}{1-x}$=$\frac{2}{1-x}$,
∴f′(x)=$\frac{2}{(1-x)^{2}}$

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,體積為$\frac{3\sqrt{3}}{2}$,底面是邊長(zhǎng)為$\sqrt{3}$的正三角形,則三棱柱ABC-A1B1C1的外接球體積為$\frac{8\sqrt{2}}{3}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若函數(shù)y=$\sqrt{sinx}$+$\sqrt{-cosx}$,且0≤x≤2π,則y的范圍是[1,$\sqrt{2+\sqrt{2}}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.下列函數(shù)中,對(duì)于定義域內(nèi)的任意兩個(gè)不同的x1,x2,都滿(mǎn)足$\frac{f({x}_{1})+f({x}_{2})}{2}$>f($\frac{{x}_{1}+{x}_{2}}{2}$)的有②③.
①y=${x}^{\frac{1}{2}}$;②y=2x;③y=x2;④y=lgx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若代數(shù)式2x2+3x+7的值是12,則代數(shù)式,4x2+6x-10的值應(yīng)是0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若-1<a<2,-2<b<1,則a-3b的取值范圍是(-4,8).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知sin(α-$\frac{π}{4}$)=$\frac{7\sqrt{2}}{10}$,cos2α=$\frac{7}{25}$,則sin(α+$\frac{π}{3}$)等于(  )
A.$\frac{3-4\sqrt{3}}{10}$B.$\frac{-3+4\sqrt{3}}{10}$C.$\frac{-4+3\sqrt{3}}{10}$D.$\frac{4-3\sqrt{3}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知直線(xiàn)y=kx+4與橢圓$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{4}$=1有兩個(gè)不同的交點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.一元二次方程x2-2ix-5=0的根的情況是(  )
A.有兩個(gè)不等的實(shí)根B.有一個(gè)實(shí)根和一個(gè)虛根
C.有一對(duì)共軛的虛根D.有兩個(gè)不共軛的虛根

查看答案和解析>>

同步練習(xí)冊(cè)答案