13.若-1<a<2,-2<b<1,則a-3b的取值范圍是(-4,8).

分析 利用已知條件轉(zhuǎn)化求解表達(dá)式的范圍即可.

解答 解:-1<a<2,…①-2<b<1,則-3<-3b<6,…②
由①②可得:-4<a-3b<8.
則a-3b的取值范圍是:(-4,8).
故答案為:(-4,8).

點(diǎn)評(píng) 本題考查不等關(guān)系式的應(yīng)用,也可以利用線性規(guī)劃求解,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.曲線C:y=xlnx在點(diǎn)M(e,e)處的切線方程為( 。
A.y=x-eB.y=x+eC.y=2x-eD.y=2x+e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)函數(shù)f(x)(x∈R)為奇函數(shù),f(1)=$\frac{1}{2}$,f(x+2)=f(x)+f(2),則f(5)和f(2003)的值分別為( 。
A.0和2001B.1和$\frac{2001}{2}$C.$\frac{5}{2}$和$\frac{2003}{2}$D.5和2003

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列結(jié)論:①(cosx)′=sinx;②(sin$\frac{π}{3}$)′=cos$\frac{π}{3}$;③若y=$\frac{1}{{x}^{2}}$,則y′|x=3=-$\frac{2}{27}$;④(-$\frac{1}{\sqrt{x}}$)′=$\frac{1}{2x\sqrt{x}}$.其中正確的有( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求下列函數(shù)的導(dǎo)數(shù):
(1)y=xe-x;
(2)y=ln(3x-2);
(3)y=$\frac{2-sinx}{cosx}$;
(4)f(x)=$\frac{1}{1-\sqrt{x}}$+$\frac{1}{1+\sqrt{x}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知二次函數(shù)f(x)=x2-2bx+c的最小值為3,它的圖象過點(diǎn)M(2,4),求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)f0(x)=sinx,f1(x)=f′0(x),f2(x)=f′1(x),…,fn+1(x)=f′n(x),n∈N,則f2016(x)=sinx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知定點(diǎn)A(-1,0),圓C:x2+y2-2x-2$\sqrt{3}$y+3=0.
(1)過點(diǎn)A向圓C引切線,求切線長(zhǎng);
(2)過點(diǎn)A作直線l1交圓C于P、Q,且$\overrightarrow{AP}$=$\overrightarrow{PQ}$,求直線11的斜率k;
(3)定點(diǎn)M,N在直線l2:x=1上,對(duì)于圓C上任意一點(diǎn)R都滿足RN=$\sqrt{3}$RM,試求M,N兩點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知冪函數(shù)y=f(x)的圖象過點(diǎn)(4,2).
(1)求f(x)的解析式;
(2)畫出f(x)的圖象,判斷它的奇偶性、單調(diào)性,并指出它的值城.

查看答案和解析>>

同步練習(xí)冊(cè)答案