16.已知函數(shù)$f(x)=4sin(x-\frac{π}{3})cosx+\sqrt{3}$.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間$[{-\frac{π}{4},\frac{π}{3}}]$上的最大值和最小值及取得最大、最小值時(shí)對應(yīng)的x值.

分析 (1)利用三角恒等變換化簡函數(shù)的解析式,再利用正弦函數(shù)的周期性,求得該函數(shù)的周期.
(2)利用正弦函數(shù)的定義域和值域,求得函數(shù)在區(qū)間$[{-\frac{π}{4},\frac{π}{3}}]$上的最大值和最小值及取得最大、最小值時(shí)對應(yīng)的x值.

解答 解:(1)∵$f(x)=4cosx(\frac{1}{2}sinx-\frac{{\sqrt{3}}}{2}cosx)+\sqrt{3}=2sinxcosx-2\sqrt{3}{cos^2}x+\sqrt{3}$
=$sin2x-\sqrt{3}cos2x$=$2sin(2x-\frac{π}{3})$,
故該函數(shù)的周期為$\frac{2π}{2}$=π.
(2)在區(qū)間$[{-\frac{π}{4},\frac{π}{3}}]$上,2x-$\frac{π}{3}$∈[-$\frac{5π}{6}$,$\frac{π}{3}$],
則當(dāng)2x-$\frac{π}{3}$=$\frac{π}{3}$,即$x=\frac{π}{3}$時(shí),函數(shù)取得最大值$\sqrt{3}$;
當(dāng)2x-$\frac{π}{3}$=-$\frac{π}{2}$,即$x=-\frac{π}{12}$時(shí),函數(shù)取得最小值-2.

點(diǎn)評 本題主要考查三角恒等變換,正弦函數(shù)的周期性,正弦函數(shù)的定義域和值域,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.集合A={y|y=($\frac{1}{2}$)x,x≤0},B={x|ln|x|<1,x∈Z}則下列結(jié)論正確的是( 。
A.A∩B={-2,-1}B.(∁RA)∪B=(-∞,0)C.A∪B=(0,+∞)D.(∁RA)∩B={-2,-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知在△ABC中,B=2A,∠ACB的平分線CD把三角形分成面積比為4:3的兩部分,則cosA=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知全集U={1,2,3,4,5},M={1,2},P={1,3,5},則M∩∁UP={2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.直線y=a分別與直線y=3x+3,曲線y=2x+lnx交于A,B兩點(diǎn),則|AB|的最小值為( 。
A.$\frac{4}{3}$B.1C.$\frac{{2\sqrt{10}}}{5}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.周長為6,圓心角弧度為1的扇形面積等于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=$\frac{x}{4π}$-sin2x的零點(diǎn)的個(gè)數(shù)為( 。
A.11B.13C.15D.17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)集合A={a,b,c,d},B={1,2,3,4,5,6},則從集合A到集合B的映射中能構(gòu)成f(a)≤f(b)≤f(c)≤f(d)的不同映射個(gè)數(shù)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在四邊形ABCD中,AD⊥DC,AD∥BC,AD=3,CD=2,$AB=2\sqrt{2}$,∠DAB=45°,四邊形繞著直線AD旋轉(zhuǎn)一周,
(1)求所形成的封閉幾何體的表面積;
(2)求所形成的封閉幾何體的體積.

查看答案和解析>>

同步練習(xí)冊答案