分析 (1)由已知寫出等差數(shù)列的通項,由通項大于等于0求得n的范圍,可知等差數(shù)列的前5項大于0,第6項等于0,求出S5即為Sn的最大值;
(2)對n分類去絕對值求得|a1|+|a2|+…+|an|的前n項和Tn.
解答 解:(1)在等差數(shù)列{an}中,由a1=5,d=-1,得an=5-1×(n-1)=6-n,
由an=6-n≥0,解得:n≤6,
∴當n=5或n=6時,前n項和Sn的值最大,等于$5×5+\frac{5×4×(-1)}{2}=15$;
(2)當n≤6時,Tn=|a1|+|a2|+…+|an|=a1+a2+…+an=5n+$\frac{n(n-1)×(-1)}{2}$=$-\frac{{n}^{2}}{2}+\frac{11n}{2}$;
當n>6時,Tn=|a1|+|a2|+…+|an|=a1+a2+…+a6-a7-a8-…-an
=2(a1+a2+…+a6)-(a1+a2+…+an)=$2×15-(-\frac{{n}^{2}}{2}+\frac{11n}{2})$=$\frac{{n}^{2}}{2}-\frac{11n}{2}+30$.
∴${T}_{n}=\left\{\begin{array}{l}{-\frac{{n}^{2}}{2}+\frac{11n}{2},n≤6}\\{\frac{{n}^{2}}{2}-\frac{11n}{2}+30,n>6}\end{array}\right.$.
點評 本題考查等差數(shù)列的通項公式,考查了等差數(shù)列的前n項和,體現(xiàn)了分類討論的數(shù)學(xué)思想方法,屬中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7種 | B. | 8種 | C. | 6種 | D. | 9種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1] | B. | (-∞,$\frac{1}{3}$] | C. | (-∞,$\frac{1}{3}$]∪[1,+∞) | D. | [$\frac{1}{3}$,$\frac{4}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,$\frac{8}{9}$] | B. | [$\frac{1}{9}$,$\frac{5}{9}$] | C. | [$\frac{2}{3}$,$\frac{8}{9}$] | D. | [0,$\frac{4}{9}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4-2$\sqrt{3}$ | B. | -2 | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com