【題目】設(shè)數(shù)列是首項為0的遞增數(shù)列,,滿足:對于任意的總有兩個不同的根,則的通項公式為_________
【答案】
【解析】
試題分析:∵,當n=1時,f1(x)=|sin(x-a1)|=|sinx|,x∈[0,a2],
又∵對任意的b∈[0,1),f1(x)=b總有兩個不同的根,∴a2=π
∴f1(x)=sinx,x∈[0,π],a2=π
又f2(x)=|sin (x-a2)|=|sin (x-π)|=|cos |,x∈[π,a3]
∵對任意的b∈[0,1),f1(x)=b總有兩個不同的根,∴…(5分)
又f3(x)=|sin (x-a3)|=|sin (x-3π)|=|sin π|,x∈[3π,a4]
∵對任意的b∈[0,1),f1(x)=b總有兩個不同的根,∴a4=6π…(6分)
由此可得,
∴
∴
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若關(guān)于的方程在區(qū)間上有兩個不同的解.
(ⅰ)求的取值范圍;
(ⅱ)若,求的取值范圍;
(2)設(shè)函數(shù)在區(qū)間上的最大值和最小值分別為,求的表達式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)數(shù)列的前項和為,點均在函數(shù)的圖象上.
(1)求證:數(shù)列為等差數(shù)列;
(2)設(shè)是數(shù)列的前項和,求使對所有都成立的最小正整數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解某地參加2015 年夏令營的名學生的身體健康情況,將學生編號為,采用系統(tǒng)抽樣的方法抽取一個容量為的樣本,且抽到的最小號碼為,已知這名學生分住在三個營區(qū),從到在第一營區(qū),從到在第二營區(qū),從到在第三營區(qū),則第一、第二、第三營區(qū)被抽中的人數(shù)分別為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】正方體的棱長為1,分別是棱,的中點,過直線的平面分別與棱、交于,設(shè),,給出以下四個命題:
①四邊形為平行四邊形;
②若四邊形面積,,則有最小值;
③若四棱錐的體積,,則為常函數(shù);
④若多面體的體積,,則為單調(diào)函數(shù).
其中假命題為( )
A.① ③ B.② C.③④ D.④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C經(jīng)過點A(﹣2,0),B(0,2),且圓心C在直線y=x上,又直線l:y=kx+1與圓C相交于P、Q兩點.
(1)求圓C的方程;
(2)若=﹣2,求實數(shù)k的值;
(3)過點(0,4)作動直線m交圓C于E,F(xiàn)兩點.試問:在以EF為直徑的所有圓中,是否存在這樣的圓P,使得圓P經(jīng)過點M(2,0)?若存在,求出圓P的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在銳角△ABC中,兩向量p=(2-2sin A,cos A+sin A),q=(sin A-cos A,1+sin A),且p與q是共線向量.
(1)求A的大。
(2)求函數(shù)y=2sin2B+cos()取最大值時,角B的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知中心在坐標原點的橢圓經(jīng)過點,且點為其右焦點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)是否存在平行于的直線,使得直線與橢圓有公共點,且直線與的距離等于4?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】水培植物需要一種植物專用營養(yǎng)液.已知每投放(且)個單位的營養(yǎng)液,它在水中釋放的濃度(克/升)隨著時間(天)變化的函數(shù)關(guān)系式近似為,其中,若多次投放,則某一時刻水中的營養(yǎng)液濃度為每次投放的營養(yǎng)液在相應(yīng)時刻所釋放的濃度之和,根據(jù)經(jīng)驗,當水中營養(yǎng)液的濃度不低于4(克/升)時,它才能有效.
(1)若只投放一次4個單位的營養(yǎng)液,則有效時間可能達幾天?
(2)若先投放2個單位的營養(yǎng)液,3天后投放個單位的營養(yǎng)液.要使接下來的2天中,營養(yǎng)液能夠持續(xù)有效,試求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com