A. | 等腰三角形 | B. | 直角三角形 | C. | 等邊三角形 | D. | 等腰直角三角形 |
分析 求出函數(shù)的導(dǎo)數(shù),判斷函數(shù)的單調(diào)性,得到函數(shù)的極值,從而求出角的度數(shù),判斷三角形的形狀即可.
解答 解:f′(x)=$\frac{3}{4}$(x-1)(x+1),由:$\frac{3}{4}$(x-1)(x+1)=0,可得x=1或x=-1,
x<-1,x>1時,f′(x)>0,函數(shù)是增函數(shù),
x∈(-1,1)時,f′(x)<0,函數(shù)是減函數(shù),
易知f(x)極大=f(-1)=$\frac{1}{2}$=cosA,
從而A=60°,而b=c=2,故B=C=60°,
故三角形是等邊三角形,
故選:C.
點評 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用以及三角形問題,是一道基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (0,$\frac{1}{3}$) | C. | [$\frac{1}{7}$,$\frac{1}{3}$) | D. | [$\frac{1}{7}$,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ±$\frac{2\sqrt{5}}{5}$ | B. | -$\frac{2\sqrt{5}}{5}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | -$\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | -$\frac{4}{3}$ | C. | 7 | D. | -7 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com