19.證明:${C}_{n}^{m}$=$\frac{n}{m}$${C}_{n-1}^{m-1}$.

分析 把要證的等式右邊展開組合數(shù)公式,整理得左邊,說明等式成立.

解答 證明:$\frac{n}{m}{C}_{n-1}^{m-1}$=$\frac{n}{m}\frac{(n-1)!}{(m-1)!(n-1-m+1)!}=\frac{n!}{m!(n-m)!}={C}_{n}^{m}$.

點評 本題考查組合及組合數(shù)公式,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知數(shù)列{an}的首項a1=a,其前n項和為Sn,且滿足Sn+Sn-1=4n2(n≥2,n∈N+),若對任意n∈N+,an<an+1恒成立,則a的取值范圍是( 。
A.(3,5)B.(4,6)C.[3,5)D.[4,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知離散型隨機(jī)變量ξ的概率分布為
 ξ 0 1 2 3
 P 0.12 0.24 0.12
則P(ξ=2)=0.52.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,某電路在A、B之間有四個焊接點,現(xiàn)已知一個焊點脫落導(dǎo)致電路不通,則焊點脫落的不同情況有(  )
A.1種B.2種C.3種D.4種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知P(x,y)是中心在原點,焦距為4$\sqrt{2}$的雙曲線上一點,且$\frac{y}{x}$的取值范圍為(-1,1),則該雙曲線的方程是(  )
A.x2-y2=8B.y2-x2=8C.x2-y2=4D.y2-x2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求函數(shù)y=$\sqrt{\frac{π}{3}-2arctan(2-x)}$的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象如圖所示,將函數(shù)f(x)的圖象向右平移$\frac{π}{6}$個單位后得到的函數(shù)圖象的解析式為( 。
A.y=sin2xB.y=sin(2x+$\frac{π}{3}$)C.y=sin(2x+$\frac{π}{6}$)D.y=sin(2x-$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.下列隨機(jī)試驗的結(jié)果能否用離散型隨機(jī)變量表示?若能,則寫出各隨機(jī)變量可能的取值,并說明這些值所表示的隨機(jī)試驗的結(jié)果.
(1)從學(xué);丶乙(jīng)過5個紅綠燈口,可能遇到紅燈的次數(shù);
(2)在優(yōu)、良、中、及格、不及格5個等級的測試中,某同學(xué)可能取得的成績.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)等差數(shù)列{an}的前n項和為Sn,且2a5-S4=2,3a2+a6=32.
(I)求數(shù)列{an}的通項公式;
(Ⅱ)記${T_n}=\frac{a_1}{2}+\frac{a_2}{4}+…+\frac{a_n}{2^n},n∈{N_+}$,求Tn

查看答案和解析>>

同步練習(xí)冊答案