【題目】已知數(shù)列滿足

1)求數(shù)列的通項公式;

2)設,數(shù)列的前項和為,求

3)設,問:是否存在非零整數(shù),使數(shù)列為遞增數(shù)列?若存在,求出的值;若不存在,請說明理由.

【答案】1

2

3)存在,

【解析】

1)根據(jù)題干中的等式即可求解數(shù)列的通項公式;

2)先根據(jù)數(shù)列的通項公式求出,再根據(jù)的特點利用錯位相減法求和即可;

3)先求出,再分為奇數(shù)和為偶數(shù)兩種情況求解即可.

1)由題意,數(shù)列滿足……①,

所以當時,…… ②,

由①-②,可得,可得,

時,,所以,也滿足上式,

所以

2)由(1)知,

,

,

兩式相減得,

所以

3)由(1)知,,要使數(shù)列為遞增數(shù)列,

恒成立,

恒成立,

整理得恒成立,所以恒成立.

為奇數(shù)時,恒成立,所以;

為偶數(shù)時,恒成立,所以

綜上可得

又因為為非零整數(shù),所以

即存在,使數(shù)列為遞增數(shù)列.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四面體A-BCD中,已知平面平面BCD為正三角形,為等腰直角三角形,其中C為直角頂點,E,F分別為校AC,AD的中點.

1)求證:平面BEF;

2)求證:平面ACD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,,,平面平面PAD,E的中點,FDC上一點,GPC上一點,且,.

1)求證:平面平面PAB;

2)若,求直線PB與平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱錐的四個頂點都在球的表面上,平面,,,,則球的半徑為______;若的中點,過點作球的截面,則截面面積的最小值是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,,都是等邊三角形.

1)證明:平面平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】嫦娥四號任務經(jīng)過探月工程重大專項領導小組審議,通過并且正式開始實施,如圖所示.假設“嫦娥四號”衛(wèi)星將沿地月轉(zhuǎn)移軌道飛向月球后,在月球附近一點變軌進入以月球球心為一個焦點的橢圓軌道繞月飛行,之后衛(wèi)星在點第二次變軌進入仍以為一個焦點的橢圓軌道繞月飛行.若用分別表示橢圓軌道的焦距,用分別表示橢圓軌道的長軸長,則下列關系中正確的是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某項針對我國《義務教育數(shù)學課程標準》的研究中,列出各個學段每個主題所包含的條目數(shù)(如下表),下圖是統(tǒng)計表的條目數(shù)轉(zhuǎn)化為百分比,按各學段繪制的等高條形圖,由圖表分析得出以下四個結論,其中錯誤的是(

A.除了綜合實踐外,其它三個領域的條目數(shù)都隨著學段的升高而增加,尤其圖象幾何在第三學段增加較多,約是第二學段的.

B.所有主題中,三個學段的總和圖形幾何條目數(shù)最多,占50%,綜合實踐最少,約占4% .

C.第一、二學段數(shù)與代數(shù)條目數(shù)最多,第三學段圖形幾何條目數(shù)最多.

D.數(shù)與代數(shù)條目數(shù)雖然隨著學段的增長而增長,而其百分比卻一直在減少.“圖形幾何條目數(shù),百分比都隨學段的增長而增長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解某初中學校學生睡眠狀況,在該校全體學生中隨機抽取了容量為120的樣本,統(tǒng)計睡眠時間(單位:.經(jīng)統(tǒng)計,時間均在區(qū)間內(nèi),將其按,,,分成6組,制成如圖所示的頻率分布直方圖:

1)世界衛(wèi)生組織表明,該年齡段的學生睡眠時間服從正態(tài)分布,其標準為:該年齡段的學生睡眠時間的平均值,方差.根據(jù)原則,用樣本估計總體,判斷該初中學校學生睡眠時間在區(qū)間上是否達標?

(參考公式:,,

2)若規(guī)定睡眠時間不低于為優(yōu)質(zhì)睡眠.已知所抽取的這120名學生中,男、女睡眠質(zhì)量人數(shù)如下列聯(lián)表所示:

優(yōu)質(zhì)睡眠

非優(yōu)質(zhì)睡眠

合計

60

19

合計

將列聯(lián)表數(shù)據(jù)補充完整,并判斷是否有的把握認為優(yōu)質(zhì)睡眠與性別有關系,并說明理由;

下面的臨界值表僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某果園今年的臍橙豐收了,果園準備利用互聯(lián)網(wǎng)銷售.為了更好的銷售,現(xiàn)隨機摘下了個臍橙進行測重,其質(zhì)量分布在區(qū)間內(nèi)(單位:克),統(tǒng)計質(zhì)量的數(shù)據(jù)作出頻率分布直方圖如下圖所示:

1)按分層抽樣的方法從質(zhì)量落在的臍橙中隨機抽取個,再從這個臍橙中隨機抽個,求這個臍橙質(zhì)量都不小于克的概率;

2)以各組數(shù)據(jù)的中間數(shù)值代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該果園的臍橙樹上大約還有個臍橙待出售,某電商提出兩種收購方案:甲:所有臍橙均以/千克收購;乙:低于克的臍橙以/個收購,高于或等于克的以/個收購.請通過計算為該果園選擇收益最好的方案.

(參考數(shù)據(jù):

查看答案和解析>>

同步練習冊答案