9.二項(xiàng)式(x+$\frac{1}{x}$)4展開式中的常數(shù)項(xiàng)是20.

分析 根據(jù)二項(xiàng)式(x+$\frac{1}{x}$)4展開式的通項(xiàng)公式,令x的指數(shù)等于0,求出對應(yīng)展開式的常數(shù)項(xiàng).

解答 解:二項(xiàng)式(x+$\frac{1}{x}$)4展開式的通項(xiàng)公式為:
Tr+1=${C}_{4}^{r}$•x4-r•${(\frac{1}{x})}^{r}$=${C}_{4}^{r}$•x4-2r,
令4-2r=0,解得r=2;
所以展開式的常數(shù)項(xiàng)為${C}_{4}^{2}$=6.
故答案為:6.

點(diǎn)評 本題考查了利用二項(xiàng)式展開式的通項(xiàng)公式求展開式中特定項(xiàng)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若純虛數(shù)z滿足iz=1+ai,則實(shí)數(shù)a=( 。
A.0B.-1或1C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)$f(x)=3sin(2x-\frac{π}{3}+ϕ),ϕ∈(0,π)$滿足f(|x|)=f(x),則ϕ的值為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.執(zhí)行如圖所示程序圖,若N=7時(shí),則輸出的結(jié)果S的值為( 。
A.$\frac{8}{7}$B.$\frac{6}{5}$C.$\frac{7}{8}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè){an}是等差數(shù)列,{bn}是各項(xiàng)都為正數(shù)的等比數(shù)列(n∈N*),且a1=1,b1=3,已知a2+b3=30,a3+b2=14
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=(an+1)•bn,Tn=c1+c2+…+cn,(n∈N*),試比較Tn與2anbn的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC內(nèi)角A,B,C的對邊分別是a,b,c,cos$\frac{C}{2}$=$\frac{\sqrt{5}}{3}$,且acosB+bcosA=2,則△ABC的面積的最大值為$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn)為F,若點(diǎn)F關(guān)于雙曲線的漸近線的對稱點(diǎn)在雙曲線的右支上,則該雙曲線的離心率是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=|x-4|+|x-a|(a∈R)的最小值為a
(1)求實(shí)數(shù)a的值;
(2)解不等式f(x)≤5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若|$\overrightarrow{a}$|=2,|$\overrightarrow$|=5,$\overrightarrow{a}$$•\overrightarrow$=5$\sqrt{3}$,則$\overrightarrow{a}$,$\overrightarrow$的夾角θ=(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步練習(xí)冊答案