分析 根據(jù)條件可判斷函數(shù)為奇函數(shù),不等式可整理為m<(x2-1)(6-x)恒成立,利用構(gòu)造函數(shù)h(x)=(x2-1)(6-x),通過求導(dǎo)函數(shù)判斷函數(shù)的單調(diào)性,得出函數(shù)的最小值.
解答 解:$f(x)=lg(x+\sqrt{{x^2}+1})$的定義域?yàn)镽,且f(-x)=-f(x),
所以f(x)為奇函數(shù),顯然在(0,+∞)上為單調(diào)遞增函數(shù),
∴函數(shù)在R上也為遞增函數(shù),
∵f($\frac{x+1}{x-1}$)+f($\frac{m}{{{{(x-1)}^2}(6-x)}}$)>0,即f($\frac{x+1}{x-1}$)>-f($\frac{m}{{{{(x-1)}^2}(6-x)}}$),
∴f($\frac{x+1}{x-1}$)>f(-$\frac{m}{{{{(x-1)}^2}(6-x)}}$),
∴$\frac{x+1}{x-1}$>-$\frac{m}{(x-1)^{2}(6-x)}$,
∴m>(x2-1)(x-6)恒成立,
設(shè)h(x)=(x2-1)(x-6),h'(x)=3x2-12x-1=3(x-2)2-13,
∴h'(x)<0,函數(shù)遞減,函數(shù)的最大值為h(1)=0,
∴m>0.
故答案為m>0.
點(diǎn)評 考查了奇函數(shù)的判斷和恒成立問題的轉(zhuǎn)化.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\frac{{\sqrt{10}}}{3}$ | C. | $2\sqrt{2}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
$\overline{I}$ | $\overline{D}$ | $\overline{W}$ | $\underset{\stackrel{10}{∑}}{i=1}({I}_{i}-\overline{I})^{2}$ | $\underset{\stackrel{10}{∑}}{i=1}({W}_{i}-\overline{W})^{2}$ | $\underset{\stackrel{10}{∑}}{i=1}({I}_{i}-\overline{I})({D}_{i}-\overline{D})$ | $\underset{\stackrel{10}{∑}}{i=1}({W}_{i}-\overline{W})({D}_{i}-\overline{D})$ |
1.04×10-11 | 45.7 | -11.5 | 1.56×10-21 | 0.51 | 6.88×10-11 | 5.1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com