分析 由$\frac{1}{x}+\frac{4}{{{y^{\;}}}}$=($\frac{1}{x}+\frac{4}{{{y^{\;}}}}$)×$\frac{1}{2}$×(2x+y)展開多項式乘多項式,然后利用基本不等式求最值.
解答 解:∵x>0,y>0且2x+y=2,則$\frac{1}{x}+\frac{4}{{{y^{\;}}}}$=($\frac{1}{x}+\frac{4}{{{y^{\;}}}}$)×$\frac{1}{2}$×(2x+y)=$\frac{1}{2}$×(6+$\frac{y}{x}$+$\frac{8x}{y}$)≥$\frac{1}{2}$×(6+2$\sqrt{\frac{y}{x}•\frac{8x}{y}}$)=3+2$\sqrt{2}$,
當(dāng)且僅當(dāng)x=$\sqrt{2}$-1,y=4-2$\sqrt{2}$時取號,
故則$\frac{1}{x}+\frac{4}{{{y^{\;}}}}$的最小值為3+2$\sqrt{2}$,
故答案為:3+2$\sqrt{2}$
點評 本題考查利用基本不等式求最值,關(guān)鍵是“1”的靈活運用,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | -$\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | -$\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
2x+1 | 3 | 5 | 7 | 9 |
f(2x+1) | 1 | 2 | 3 | 4 |
x | 1 | 2 | 3 | 4 |
g(x) | 3 | 5 | 7 | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | -8 | ||
C. | |${\overrightarrow{AB}}$|cosA | D. | 與菱形的邊長有關(guān) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com