10.已知函數(shù)f(x)=cosxsin(x-$\frac{π}{6}}$)+cos2x+$\frac{1}{4}$,x∈R.
(1)求f(x)單調(diào)遞增區(qū)間;
(2)求f(x)在[-$\frac{π}{12}$,$\frac{5π}{12}}$]上的最大值和最小值.

分析 (1)將已知函數(shù)解析式轉(zhuǎn)化為正弦函數(shù),然后求其單調(diào)遞增區(qū)間;
(2)根據(jù)(1)中正弦函數(shù)的自變量的取值范圍來(lái)求函數(shù)的最值.

解答 解:(1)f(x)=cosxsin(x-$\frac{π}{6}}$)+cos2x+$\frac{1}{4}$
=cosx($\frac{\sqrt{3}}{2}$sinx-$\frac{1}{2}$cosx)+cos2x+$\frac{1}{4}$
=-$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sinxcosx+cos2x+$\frac{1}{4}$
=$\frac{\sqrt{3}}{4}$sin2x+$\frac{3}{4}$cos2x,
=$\frac{\sqrt{3}}{2}$sin(2x+$\frac{π}{3}$).
由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,解得kπ-$\frac{5π}{3}$≤x≤kπ+$\frac{π}{12}$,
∴f(x)單調(diào)遞增區(qū)間是[kπ-$\frac{5π}{3}$,kπ+$\frac{π}{12}$](k∈Z).
(2)由x∈[-$\frac{π}{12}$,$\frac{5π}{12}}$],得
2x+$\frac{π}{3}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],
∴-$\frac{1}{2}$≤sin(2x+$\frac{π}{3}$)≤1,
∴-$\frac{\sqrt{3}}{4}$≤f(x)≤$\frac{\sqrt{3}}{2}$,
因此,f(x)在[-$\frac{π}{12}$,$\frac{5π}{12}}$]上的最大值和最小值分別為$\frac{\sqrt{3}}{2}$,-$\frac{\sqrt{3}}{4}$.

點(diǎn)評(píng) 本題考查了三角函數(shù)中的恒等變換應(yīng)用.利用三角函數(shù)公式將函數(shù)進(jìn)行化簡(jiǎn)是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.天氣預(yù)報(bào)說(shuō),未來(lái)三天每天下雨的概率都是0.6,用1、2、3、4表示不下雨,用5、6、7、8、9、0表示下雨,利用計(jì)算機(jī)生成下列20組隨機(jī)數(shù),則未來(lái)三天恰有兩天下雨的概率大約是0.4.
757 220  582 092 103 000 181 249  414  993
010 732 680  596 761 835 463 521 186  289.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知α∈($\frac{π}{2}$,π),且cosα=-$\frac{5}{13}$,則$\frac{tan(α+\frac{π}{2})}{cos(α+π)}$=( 。
A.$\frac{12}{13}$B.-$\frac{12}{13}$C.$\frac{13}{12}$D.-$\frac{13}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{1-x}{e^x}$.
(1)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程和函數(shù)f(x)的極值:
(2)若對(duì)任意x1,x2∈[a,+∞),都有f(x1)-f(x2)≥-$\frac{1}{e^2}$成立,求實(shí)數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.將函數(shù)y=sin(2x-$\frac{π}{6}$)的圖象向左平移$\frac{2π}{3}$個(gè)單位,所得函數(shù)圖象的一個(gè)對(duì)稱(chēng)中心為( 。
A.$(\frac{π}{12},0)$B.$(\frac{π}{6},0)$C.$(-\frac{π}{12},0)$D.$(\frac{π}{3},0)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)a∈R,若復(fù)數(shù)(1+i)(a+i)的虛部為零,則a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若S2=7,an+1=2Sn+1,n∈N*,則S5=202.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知正數(shù)a,b滿(mǎn)足$\frac{1}{a}$+$\frac{9}$=$\sqrt{ab}$-5,則ab的最小值為36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)向量$\overrightarrow{a}$=(-1,1,2),$\overrightarrow$=(2,1,3),則向量$\overrightarrow{a}$,$\overrightarrow$的夾角的余弦值為(  )
A.$-\frac{{2\sqrt{21}}}{21}$B.$-\frac{{5\sqrt{21}}}{42}$C.$\frac{{2\sqrt{21}}}{21}$D.$\frac{{5\sqrt{21}}}{42}$

查看答案和解析>>

同步練習(xí)冊(cè)答案