2.已知集合M={x|x+1≥0},N={x|2x<4},則M∩N=( 。
A.(-∞,-1]B.[-1,2)C.(-1,2]D.(2,+∞)

分析 求出M與N中不等式的解集分別確定出M與N,找出M與N的交集即可.

解答 解:由M中不等式解得:x≥-1,即M=[-1,+∞),
由N中不等式變形得:2x<4=22,
解得:x<2,即N=(-∞,2),
則M∩N=[-1,2),
故選:B.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=log2(x+1).
(Ⅰ)求函數(shù)f(x)在定義域R上的解析式;
(Ⅱ)解關(guān)于x的不等式f(2x-1)>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列四個(gè)圖象,只有一個(gè)符合y=|k1x+b1|+|k2x+b2|-|k3x+b3|(k1,k2k3∈R+,b1b2b3≠0)的圖象,則根據(jù)你所判斷的圖象,k1、k2、k3之間一定滿足的關(guān)系是( 。
A.k1+k2=k3B.k1=k2=k3C.k1+k2>k3D.k1+k2<k3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,以矩形ABCD的一邊AB為直徑的半圓與對(duì)邊CD相切,E為BC的中點(diǎn),P為半圓弧上任意一點(diǎn).若$\overrightarrow{AP}$=λ$\overrightarrow{AD}$+μ$\overrightarrow{AE}$,則λ-μ的最大值為( 。
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1(x≥0)}\\{{e}^{x}(x<0)}\end{array}\right.$,則f[f(-1)]=$\frac{1}{{e}^{2}}+1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在同一坐標(biāo)系內(nèi),函數(shù)y=x+$\frac{1}{x}$和y=4sin$\frac{πx}{2}$的圖象公共點(diǎn)的個(gè)數(shù)為( 。
A.6B.4C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果是( 。
A.-2B.$-\frac{1}{3}$C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,平面PAC⊥平面ABC,AC⊥BC,△PAC為等邊三角形,PE∥BC,過BC作平面交AP,AE分別于點(diǎn)N,M,設(shè)$\frac{AM}{AE}$=$\frac{AN}{AP}$=λ.
(1)求證:MN∥平面ABC;
(2)求λ的值,使得平面ABC與平面MNC所成的銳二面角的大小為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知數(shù)列{an}中,a1=2,an+1=2an+3n+1,則數(shù)列{an}的通項(xiàng)公式an=3n-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案