將邊長(zhǎng)為1的正方形ABCD沿對(duì)角線AC折起,使△ABD為正三角形,則三棱錐A-BCD的體積為( 。
A、
1
6
B、
1
12
C、
3
12
D、
2
12
考點(diǎn):棱柱、棱錐、棱臺(tái)的體積
專題:空間位置關(guān)系與距離
分析:取AC的中點(diǎn)O,連接BO,DO,求出底面面積以及高,然后求解體積即可.
解答: 解:取AC的中點(diǎn)O,連接BO,DO,由題意,AC⊥BO,AC⊥DO,
BO=DO=
2
2
,
因?yàn)椤鰽BD為正三角形,AB=AD=DB=1,由已知可得AO=OB=OD,∴△OBD是直角三角形,∴DO⊥OB,
VA-BCD=VD-ABC=
1
3
SABC•DO=
1
3
×
1
2
×
2
2
=
2
12

故選:D.
點(diǎn)評(píng):本題考查折疊問(wèn)題,空間幾何體的體積的求法,考查空間想象能力以及計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)任意正整數(shù)n都有6Sn=1-2an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=(-1)n-1
4(n+1)
log
1
2
anlog
1
2
an+1
,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn),作EP⊥PB交PB于點(diǎn)F
(1)證明PA∥平面EDB;
(2)若PD=DC=2,求三棱錐A-DCE的體積;
(3)證明:PB⊥EFD平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某公司在甲乙兩地同時(shí)銷售一種品牌車,利潤(rùn)(單位:萬(wàn)元)分別為L(zhǎng)1=-x2+21x和L2=2x(其中銷售量x單位:輛).若該公司在兩地共銷售15輛,則公司在甲地銷售多少輛能獲得最大利潤(rùn),且獲得的最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x
ax+b
(a,b為常數(shù),且a≠0),滿足f(2)=1,方程f(x)=x有唯一實(shí)數(shù)解,
(1)求函數(shù)f(x)的解析式
(2)判斷f(x)在(1,3)上的單調(diào)性,并證明.
(3)若f(x)-3a+1>0在(1,3)上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式|
x+1
x-1
|<x的解集是( 。
A、{x|0x<1}∪{x|x>1}
B、{x|1-
2
<x<1}∪{x|x>1+
2
}
C、{x|-1x<0}
D、{x|x>1+
2
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體正視圖與側(cè)視圖相同,其正視圖與俯視圖如圖所示,且圖中的四邊形都是邊長(zhǎng)為2的正方形,正視圖中兩條虛線互相垂直,則該幾何體的體積是(  )
A、
20
3
B、6
C、4
D、
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知C的參數(shù)方程為
x=3cost
y=3sint
(t為參數(shù)),C在點(diǎn)(0,3)處的切線為l,則l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前項(xiàng)和為Sn=4-an-
1
2n-2
,
(Ⅰ)求an+1與an的關(guān)系;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案