分析 根據(jù)雙曲線的定義,建立方程關(guān)系求出BF1,BF1的大小,利用余弦定理進行求解即可.
解答 解:作出相應(yīng)的圖象如圖:
∵|AB|=|AF2|,且∠BAF2=60°,
∴△BAF1為等邊三角形
設(shè)|AB|=|AF2|=x,
則|AF1|-|AF2|=2a,
即|BF1|=2a,
由|BF2|-|BF1|=2a,
則|BF2|=|BF1|+2a=2a+2a=4a,
∠F1BF2=120°,
在三角形BF1F1,中,
4c2=4a2+16a2-2×2a×4a×(-$\frac{1}{2}$),
即4c2=4a2+16a2+8a2=28a2,
即c2=7a2,
則c=$\sqrt{7}$a,
即e=$\frac{c}{a}$=$\sqrt{7}$,
故答案為:$\sqrt{7}$
點評 本題主要考查雙曲線離心率的計算,根據(jù)雙曲線的定義建立方程關(guān)系,以及利用余弦定理結(jié)合雙曲線離心率的定義是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{25}{4}$ | B. | $\frac{5}{2}$ | C. | $\sqrt{5}$ | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{4}$x2-5y2=1 | B. | 5y2-$\frac{5}{4}$x2=1 | C. | 5x2-$\frac{5}{4}$y2=1 | D. | $\frac{5}{4}$y2-5x2=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=±$\sqrt{2}$x | B. | y=±2x | C. | y=±$\sqrt{3}$x | D. | y=±2$\sqrt{2}$x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1+3i | B. | 1+3i | C. | 1-3i | D. | -1-3i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[{\frac{1}{2},2}]$ | B. | $({\frac{1}{2},2})$ | C. | $[{\frac{1}{2},1}]$ | D. | $({\frac{1}{2},1})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1 | B. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1 | C. | $\frac{{x}^{2}}{36}$-$\frac{{y}^{2}}{64}$=1 | D. | $\frac{{x}^{2}}{64}$-$\frac{{y}^{2}}{36}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com