15.若變量x,y滿足$\left\{\begin{array}{l}{2x+y-5≥0}\\{x-y+5≥0}\\{2x-y-5≤0}\end{array}\right.$ 則x2+y2的最小值為( 。
A.$\frac{25}{4}$B.$\frac{5}{2}$C.$\sqrt{5}$D.5

分析 作出可行域,x2+y2表示區(qū)域內(nèi)的點到原點距離的平方,數(shù)形結(jié)合并由點到直線的距離公式可得.

解答 解:作出$\left\{\begin{array}{l}{2x+y-5≥0}\\{x-y+5≥0}\\{2x-y-5≤0}\end{array}\right.$ 所對應的可行域(如圖△ABC),
x2+y2表示區(qū)域內(nèi)的點到原點距離的平方,
結(jié)合圖象可得OD為距離的最小值,
由點到直線的距離公式可得OD=$\frac{|2×0+0-5|}{\sqrt{{2}^{2}+{1}^{2}}}$=$\sqrt{5}$,
故x2+y2的最小值為5,
故選:D.

點評 本題考查簡單線性規(guī)劃,準確作圖并數(shù)形結(jié)合是解決問題的關(guān)鍵,屬中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

5.已知橢圓C的中心在坐標原點,焦點在x軸上,離心率為$\frac{1}{2}$,過橢圓的左焦點F且傾斜角為60°的直線與圓x2+y2=$\frac{^{2}}{{a}^{2}}$相切
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l:y=kx+m與橢圓C交于不同的兩點M,N(M,N是左、右頂點),若以MN為直徑的圓恰好經(jīng)過橢圓C的右頂點A,判斷直線l是否過定點,若是,求出該定點的坐標;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若f(x)=ex+ae-x為偶函數(shù),則f(x-1)<$\frac{{e}^{2}+1}{e}$的解集為(0,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知等差數(shù)列{an}的前n項和為Sn,a1=1,若S10=S15,則Sn取最大值時的n的取值為( 。
A.12B.13C.12或13D.13或14

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設f(n)=($\frac{1+i}{1-i}$)n+($\frac{1-i}{1+i}$)n(n∈N*),則集合{f(n)}中元素的個數(shù)為( 。
A.1B.2C.3D.無數(shù)個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.一場晚會有4個唱歌節(jié)目和2個舞蹈節(jié)目,要求排出一個節(jié)目單.
(1)第一個節(jié)目是舞蹈.有多少種排法?
(2)2個舞蹈節(jié)目要排在一起,有多少種排法?
(3)2個舞蹈節(jié)目彼此要隔開,有多少種排法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)=2sin(ωx+$\frac{π}{6}$)(ω>0),滿足對任意f(x1)=f(x2)=0.都有|x1-x2|≥$\frac{π}{2}$,把函數(shù)f(x)的圖象沿x軸向左平移$\frac{π}{6}$個單位,得到函數(shù)g(x)的圖象,關(guān)于函數(shù)g(x),下列說法正確的是(  )
A.其圖象關(guān)于直線x=-$\frac{π}{4}$對稱B.函數(shù)g(x)是奇函數(shù)
C.在[$\frac{π}{4}$,$\frac{π}{2}$]上是增函數(shù)D.x∈[$\frac{π}{6}$,$\frac{2π}{3}$]時,函數(shù)g(x)的值域是[-2,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.sin10°cos20°+cos10°sin20°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.設F1,F(xiàn)2是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,A是其右支上一點,連接AF1交雙曲線的左支于點B,若|AB|=|AF2|,且∠BAF2=60°,則該雙曲線的離心率為$\sqrt{7}$.

查看答案和解析>>

同步練習冊答案