分析 要使命題成立需滿足f(x0)min>g(x1)min,利用函數(shù)的單調(diào)性,可求最值,即可得到實(shí)數(shù)m的取值范圍.
解答 解:要使命題成立需滿足f(x1)min>g(x2)min,
x1∈[-1,2],g(x)=x2-2x∈[-1,2],g(x1)min=-1
m>0,函數(shù)f(x)=mx+2在[-1,2]上是增函數(shù),所以f(x0)min=f(-1)=-m+2,
∴-m+2>-1,∴m<3,∴0<m<3;
m=0,f(x)=2,f(x0)min=2>-1,成立;
m<0,函數(shù)f(x)=mx+2在[-1,2]上是減函數(shù),所以f(x0)min=f(2)=2m+2,
∴2m+2>-1,∴m>-1.5,∴-1.5<m<0,
綜上所述,實(shí)數(shù)m的取值范圍是-1.5<m<3.
故答案為:-1.5<m<3.
點(diǎn)評(píng) 本題考查函數(shù)最值的運(yùn)用,考查函數(shù)的單調(diào)性,考查學(xué)生分析解決問(wèn)題的能力,要使命題成立需滿足f(x1)min>g(x2)min,是解題的關(guān)鍵,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2+$\sqrt{3}$ | B. | 2-$\sqrt{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com