3.已知函數(shù)f(x)=2sin2(x-$\frac{π}{4}$)+$\sqrt{3}$cos2x-3.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若在△ABC中,AB=2|f($\frac{π}{4}$)|,AC=$\sqrt{3}$BC,求△ABC面積的最大值.

分析 (Ⅰ)利用二倍角與兩角和的余弦函數(shù)化簡函數(shù)為一個(gè)角的一個(gè)三角函數(shù)的形式,通過正弦函數(shù)的單調(diào)減區(qū)間,直接求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)BC=a,則AC=$\sqrt{3}$a,利用余弦定理求出cosB,求出cos2B和sin2B,再利用三角形的面積公式化簡S2△ABC,利用配方法和二次函數(shù)的性質(zhì)求出面積的最大值.

解答 解:(Ⅰ)f(x)=2sin2(x-$\frac{π}{4}$)+$\sqrt{3}$cos2x-3
=2×$\frac{1-cos(2x-\frac{π}{2})}{2}$+$\sqrt{3}$cos2x-3=-sin2x+$\sqrt{3}$cos2x-2
=-2sin(2x-$\frac{π}{3}$)-2
由$\frac{π}{2}$+2kπ≤2x-$\frac{π}{3}$≤$\frac{3π}{2}$+2kπ,
得$\frac{5π}{12}$+kπ≤x≤$\frac{11}{12}$π+kπ(k∈Z).
∴函數(shù)f(x)的單調(diào)遞增區(qū)間是[$\frac{5π}{12}$+kπ,$\frac{11}{12}$π+kπ](k∈Z).  
(Ⅱ)AB=2|f($\frac{π}{4}$)|=2|-1-2|=6,設(shè)BC=a,則AC=$\sqrt{3}$a,
根據(jù)余弦定理得,cosB=$\frac{36+{a}^{2}-3{a}^{2}}{2×6×a}$=$\frac{3}{a}$-$\frac{1}{6}$a,
則sin2B=1-cos2B=2-$\frac{9}{{a}^{2}}$-$\frac{1}{36}{a}^{2}$,
根據(jù)面積公式得,S△ABC=$\frac{1}{2}•6•a•$sinB=3asinB,
所以S2△ABC=9a2sin2B=-$\frac{1}{4}$(a2-36)2+243,
當(dāng)a2=36,即a=6時(shí),S2△ABC取到最大值243,即△ABC面積的最大值是9$\sqrt{3}$.

點(diǎn)評 本題考查二倍角公式與兩角和與差的三角函數(shù),函數(shù)的單調(diào)性函數(shù)值的求法,考查計(jì)算能力,轉(zhuǎn)化思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某班準(zhǔn)備從甲、乙等七人中選派四人發(fā)言,要求甲乙兩人至少有一人參加,那么不同的發(fā)言順序有( 。
A.30B.600C.720D.840

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)O為坐標(biāo)原點(diǎn),若x,y滿足不等式組$\left\{\begin{array}{l}{x+y≥2}\\{x≤1}\\{y≤2}\end{array}\right.$,則$\frac{y}{x}$的最小值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知斜三棱柱ABC-A1B1C1的底面是邊長為2的正三角形,頂點(diǎn)A1在底面ABC上的射影O是△ABC的中心,AA1與AB的夾角為45°
(1)求證:AA1⊥平面A1BC;
(2)側(cè)面BB1C1C是矩形;
(3)求棱柱的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某單位共有36名員工,按年齡分為老年、中年、青年三組,其人數(shù)之比為3:2:1,現(xiàn)用分層抽樣的方法從總體中抽取一個(gè)容量為12的樣本,則青年組中甲、乙至少有一人被抽到的概率為( 。
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{25}{36}$D.$\frac{11}{36}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)集合A={x|$\frac{1}{x}$>1},B={x|y=$\sqrt{{2}^{x}-16}$},則A∩(∁RB)等于(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在數(shù)列{an}中,a1=1,an+2+(-1)nan=1,則數(shù)列{an}的前4n項(xiàng)之和為2n(n+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知F是雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點(diǎn),若以點(diǎn)B(0,b)為圓心的圓與雙曲線的一條漸近線相切于點(diǎn)P,且$\overrightarrow{BP}$∥$\overrightarrow{PF}$,則該雙曲線的離心率為( 。
A.$\sqrt{5}$+1B.$\frac{{1+\sqrt{3}}}{2}$C.2D.$\frac{{1+\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.不等式log 2 |x-3|<1的解集為{x|1<x<3或3<x<5}.

查看答案和解析>>

同步練習(xí)冊答案