6.已知直線AB過(guò)點(diǎn)A(3,-5),B(0,-9)傾斜角為α
(1)若直線CD的傾斜角為2α,則斜率kCD=-$\frac{24}{7}$
(2)若直線EF的傾斜角為$\frac{α}{2}$,則斜率kEF=$\frac{1}{2}$.

分析 利用斜率公式及二倍角公式,即可得出結(jié)論.

解答 解:由題意,tanα=$\frac{-5+9}{3-0}$=$\frac{4}{3}$,
(1)若直線CD的傾斜角為2α,則斜率kCD=tanα=$\frac{2×\frac{4}{3}}{1-\frac{16}{9}}$=-$\frac{24}{7}$;
(2)設(shè)kEF=k(k>0),則$\frac{2k}{1-{k}^{2}}$=$\frac{4}{3}$,∴k=$\frac{1}{2}$.
故答案為:-$\frac{24}{7}$;$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查斜率公式及二倍角公式,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.求函數(shù)y=x2在下列范圍內(nèi)的值域:
(1)x∈[1,2];
(2)x∈[-1,2];
(3)x∈[-3,2];
(4)x∈[a,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.?dāng)?shù)據(jù)a1,a2,…,an 的方差為σ2,平均數(shù)為μ,則:
(1)數(shù)據(jù)ka1+b,ka2+b,ka3+b,…,kan+b,(kb≠0)的標(biāo)準(zhǔn)差為|k|σ,平均數(shù)為kμ+b;
(2)數(shù)據(jù)k(a1+b),k(a2+b),k(a3+b),…,k(an+b),(kb≠0)的標(biāo)準(zhǔn)差為|k|σ,平均數(shù)為kμ+kb.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知集合A={x|x2-ax+a2-12=0},B={x|x2-5x+6=0},是否存在實(shí)數(shù)a,使得集合A,B同時(shí)滿足下列三個(gè)條件:①A≠B;②A∪B=B;③∅?(A∩B)?若存在,求出a的值;若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)M={1,1+d,1+2d},N={1,q,q2},且M,N為同一集合,試求實(shí)數(shù)d,q,并寫出集合M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知數(shù)列{an}的前n項(xiàng)和記為Sn,a1=1,an+1=2Sn+1(n≥1).
(1)求{an}的通項(xiàng)公式;
(2)等差數(shù)列{bn}的各項(xiàng)為正,其前n項(xiàng)和為Tn,且T3=15,又a1+b1、a2+b2、a3+b3成等比數(shù)列,求Tn;
(3)求數(shù)列{an•bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.判斷集合A是否為集合B的子集,若是打“√”,若不是打“×”.
(1)A={1,3,5},B={1,2,3,4,5,6}.√;
(2)A={1,3,5},B={1,3,6,9}.×;
(3)A={0},B={x|x2+1=0}.×;
(4)A={a,b,c,d},B={d,b,c,a}.√.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)y=$\frac{2kx-8}{{k}^{2}{x}^{2}+3kx+1}$的定義域?yàn)镽,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.給出算法
第一步,輸入n=5.
第二步,令i=1,S=1.
第三步,判斷i≤n是否成立,若不成立,輸出S,結(jié)束算法,若成立,執(zhí)行下一步.
第四步,令S的值乘以i,仍用S表示,令i的值增加1,仍用i表示,返回第三步.
該算法的功能是計(jì)算并輸出S=1×2×3×4×5的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案