【題目】已知平面上的三點(diǎn) 、 、 .
(1)求以 、 為焦點(diǎn)且過(guò)點(diǎn) 的橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn) 、 、 關(guān)于直線(xiàn) 的對(duì)稱(chēng)點(diǎn)分別為 、 、 ,求以 、 為焦點(diǎn)且過(guò)點(diǎn) 的雙曲線(xiàn)的標(biāo)準(zhǔn)方程.
【答案】(1) (2).
【解析】試題分析:(1)根據(jù)題意設(shè)出所求的橢圓的標(biāo)準(zhǔn)方程,然后代入半焦距,根據(jù)橢圓的定義求出,從而可得,進(jìn)而可得橢圓的標(biāo)準(zhǔn)方程;(2)點(diǎn) 、 、 關(guān)于直線(xiàn) 的對(duì)稱(chēng)點(diǎn)分別為 、 、 .設(shè)所求雙曲線(xiàn)的標(biāo)準(zhǔn)方程為
( , )其半焦距 ,由雙曲線(xiàn)定義得,得,從而可得,進(jìn)而可得 、 為焦點(diǎn)且過(guò)點(diǎn) 的雙曲線(xiàn)的標(biāo)準(zhǔn)方程.
試題解析:(1)由題意知,焦點(diǎn)在 軸上,可設(shè)橢圓的標(biāo)準(zhǔn)方程為 ( )
其半焦距
由橢圓定義得
∴
∴
故橢圓的標(biāo)準(zhǔn)方程為 .
(2)點(diǎn) 、 、 關(guān)于直線(xiàn) 的對(duì)稱(chēng)點(diǎn)分別為 、 、 .設(shè)所求雙曲線(xiàn)的標(biāo)準(zhǔn)方程為
( , )其半焦距 ,
由雙曲線(xiàn)定義得
∴ ,∴ ,
故所求的雙曲線(xiàn)的標(biāo)準(zhǔn)方程為 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】柴靜《穹頂之下》的播出,讓大家對(duì)霧霾天氣的危害有了更進(jìn)一步的認(rèn)識(shí),對(duì)于霧霾天氣的研究也漸漸活躍起來(lái),某研究機(jī)構(gòu)對(duì)春節(jié)燃放煙花爆竹的天數(shù)x與霧霾天數(shù)y進(jìn)行統(tǒng)計(jì)分析,得出下表數(shù)據(jù).
x | 4 | 5 | 7 | 8 |
y | 2 | 3 | 5 | 6 |
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線(xiàn)性回歸方程;
(2)試根據(jù)(1)求出的線(xiàn)性回歸方程,預(yù)測(cè)燃放煙花爆竹的天數(shù)為9的霧霾天數(shù).
(相關(guān)公式:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-2(n∈N*),在數(shù)列{bn}中,b1=1,點(diǎn)P(bn,bn+1)在直線(xiàn)x-y+2=0上.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)記Tn=a1b1+a2b2+ +anbn,求Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人玩猜數(shù)字游戲,先由甲心中想一個(gè)數(shù)字,記為,再由乙猜甲剛才所想的數(shù)字,把乙猜的數(shù)字記為,其中,若,就稱(chēng)甲乙“心有靈犀”.現(xiàn)任意找兩人玩這個(gè)游戲,則他們“心有靈犀”的概率為 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】遂寧市觀音湖港口船舶?康姆桨甘窍鹊较韧#
(1)若甲乙兩艘船同時(shí)到達(dá)港口,雙方約定各派一名代表從1,2,3,4,5中各隨機(jī)選一個(gè)數(shù)(甲、乙選取的數(shù)互不影響),若兩數(shù)之和為偶數(shù),則甲先?;若兩數(shù)之和為奇數(shù),則乙先停靠,這種規(guī)則是否公平?請(qǐng)說(shuō)明理由.
(2)根據(jù)以往經(jīng)驗(yàn),甲船將于早上7:00~8:00到達(dá),乙船將于早上7:30~8:30到達(dá),請(qǐng)求出甲船先停靠的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)有以下說(shuō)法:
①是的極值點(diǎn).
②當(dāng)時(shí), 在上是減函數(shù).
③的圖像與處的切線(xiàn)必相交于另一點(diǎn).
④當(dāng)時(shí), 在上是減函數(shù).
其中說(shuō)法正確的序號(hào)是_______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓()的離心率是,點(diǎn)在短軸上,且。
(1)球橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),過(guò)點(diǎn)的動(dòng)直線(xiàn)與橢圓交于兩點(diǎn)。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)橢圓的中心為原點(diǎn),長(zhǎng)軸在軸上,上頂點(diǎn)為,左、右焦點(diǎn)分別為,線(xiàn)段的中點(diǎn)分別為,且是面積為的直角三角形.
(1)求該橢圓的離心率和標(biāo)準(zhǔn)方程;
(2)過(guò)作直線(xiàn)交橢圓于兩點(diǎn),使,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱錐A﹣BCD中,側(cè)棱AB,AC,AD兩兩垂直,△ABC、△ACD、△ABD的面積分別為 、 、2 ,則三棱錐A﹣BCD的外接球的體積為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com