【題目】設函數(shù)=Asin(A>0,>0,<≤)在處取得最大值2,其圖象與x軸的相鄰兩個交點的距離為。
(1)求的解析式;
(2)求函數(shù) 的值域。
【答案】(1)=2 sin(2x+);(2) (,]
【解析】
(1)先確定函數(shù)的周期,可得ω的值,利用函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,﹣π<φ<π)在x處取得最大值2,即可求得f(x)的解析式;
(2)由三角函數(shù)恒等變換的應用化簡可得g(x),,由,即可求得函數(shù)g(x)的值域.
解:(1)由題意可得:f(x)max=A=2,,
于是,
故f(x)=2sin(2x+φ),
由f(x)在處取得最大值2可得:(k∈Z),
又﹣π<φ<π,故,
因此f(x)的解析式為.
(2)由(1)可得:,
故
,,
令t=cos2x,可知0≤t≤1且,
即,
從而,
因此,函數(shù)g(x)的值域為.
科目:高中數(shù)學 來源: 題型:
【題目】某工廠為了確定工效,進行了5次試驗,收集數(shù)據(jù)如下:
加工零件個數(shù)(個) | 10 | 20 | 30 | 40 | 50 |
加工時間(分鐘) | 64 | 69 | 75 | 82 | 90 |
經(jīng)檢驗,這組樣本數(shù)據(jù)的兩個變量與具有線性相關關系,那么對于加工零件的個數(shù)與加工時間這兩個變量,下列判斷正確的是( )
A. 負相關,其回歸直線經(jīng)過點 B. 正相關,其回歸直線經(jīng)過點
C. 負相關,其回歸直線經(jīng)過點 D. 正相關,其回歸直線經(jīng)過點
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,,為自然對數(shù)的底數(shù).
(Ⅰ)若函數(shù)在上存在零點,求實數(shù)的取值范圍;
(Ⅱ)若函數(shù)在處的切線方程為.求證:對任意的,總有.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐的底面ABCD是正方形,為等邊三角形,M,N分別是AB,AD的中點,且平面平面ABCD.
證明:平面PNB;
設點E是棱PA上一點,若平面DEM,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在扶貧活動中,為了盡快脫貧(無債務)致富,企業(yè)甲將經(jīng)營狀況良好的某種消費品專賣店以5.8萬元的優(yōu)惠價格轉讓給了尚有5萬元無息貸款沒有償還的小型企業(yè)乙,并約定從該店經(jīng)營的利潤中,首先保證企業(yè)乙的全體職工每月最低生活費的開支3 600元后,逐步償還轉讓費(不計息).在甲提供的資料中:①這種消費品的進價為每件14元;②該店月銷量Q(百件)與銷售價格P(元)的關系如圖所示;③每月需各種開支2 000元.
(1)當商品的價格為每件多少元時,月利潤扣除職工最低生活費的余額最大?并求最大余額;
(2)企業(yè)乙只依靠該店,最早可望在幾年后脫貧?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù));以原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(Ⅰ)求曲線的普通方程與曲線的直角坐標方程;
(Ⅱ)若把曲線各點的橫坐標伸長到原來的倍,縱坐標變?yōu)樵瓉淼?/span>,得到曲線,求曲線的方程;
(Ⅲ)設為曲線上的動點,求點到曲線上點的距離的最小值,并求此時點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ax2﹣x(a∈R).
(1)當a=1時,求函數(shù)f(x)在(1,﹣2)處的切線方程;
(2)當a≤0時,分析函數(shù)f(x)在其定義域內的單調性;
(3)若函數(shù)y=g(x)的圖象上存在一點P(x0 , y0),使得以P為切點的切線m將圖象分割為c1 , c2兩部分,且c1 , c2分別完全位于切線m的兩側(除了P點外),則稱點x0為函數(shù)y=g(x)的“切割點“.問:函數(shù)f(x)是否存在滿足上述條件的切割點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)通過調查問卷(滿分50分)的形式對本企業(yè)900名員工的工作滿意程度進行調查,并隨機抽取了其中30名員工(16名女工,14名男工)的得分,如下表:
女 | 47 | 36 | 32 | 48 | 34 | 44 | 43 | 47 | 46 | 41 | 43 | 42 | 50 | 43 | 35 | 49 |
男 | 37 | 35 | 34 | 43 | 46 | 36 | 38 | 40 | 39 | 32 | 48 | 33 | 40 | 34 |
(1)根據(jù)以上數(shù)據(jù),估計該企業(yè)得分大于45分的員工人數(shù);
(2)現(xiàn)用計算器求得這30名員工的平均得分為40.5分,若規(guī)定大于平局得分為 “滿意”,否則為 “不滿意”,請完成下列表格:
“滿意”的人數(shù) | “不滿意”的人數(shù) | 合計 | |
女員工 | 16 | ||
男員工 | 14 | ||
合計 | 30 |
(3)根據(jù)上述表中數(shù)據(jù),利用獨立性檢驗的方法判斷,能否在犯錯誤的概率不超過1%的前提下,認為該企業(yè)員工“性別”與“工作是否滿意”有關?
參考數(shù)據(jù):
P(K2K) | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
K | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com