【題目】某市為了鼓勵市民節(jié)約用電,實行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過200度的部分按0.5元/度收費,超過200度但不超過400度的部分按0.8元/度收費,超過400度的部分按1.0元/度收費.
(1)求某戶居民用電費用 (單位:元)關(guān)于月用電量 (單位:度)的函數(shù)解析式;
(2)為了了解居民的用電情況,通過抽樣,獲得了今年1月份100戶居民每戶的用電量,統(tǒng)計分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年1月份用電費用不超過260元的點80%,求 的值;

(3)在滿足(2)的條件下,若以這100戶居民用電量的頻率代替該月全市居民用戶用電量的概率,且同組中的數(shù)據(jù)用該組區(qū)間的中點值代替,記 為該居民用戶1月份的用電費用,求 的分布列和數(shù)學期望.

【答案】
(1)

時, ;

時, ,

時, ,

所以 之間的函數(shù)解析式為: ;


(2)

由(1)可知:當 時, ,則 ,

結(jié)合頻率分布直方圖可知: ,

;


(3)

由題意可知 可取50,150,250,350,450,550.

時, ,∴ ,

時, ,∴ ,

時, ,∴

時, ,∴ ,

時, ,∴

時, ,∴ ,

的概率分布列為:

25

75

140

220

310

410

0.1

0.2

0.3

0.2

0.15

0.05

所以隨機變量 的數(shù)學期望

.


【解析】(1)分段計算,表示出y和x之間的關(guān)系;(2)根據(jù)y=260元計算出相對應(yīng)的x的值為400,依據(jù)題意有P(x≤400)=0.8;P(x≤400)+P(400<x≤600)=0.2;(3)根據(jù)期望值進行計算即可。
【考點精析】解答此題的關(guān)鍵在于理解頻率分布直方圖的相關(guān)知識,掌握頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè),求解下列問題:(1)求 的單調(diào)區(qū)間;(2)在銳角 △ A B C 中,角 ∠ A , B , C ,的對邊分別為 a , b , c ,若 = 0 , a = 1 ,求 △ A B C 面積的最大值.
(1)求的單調(diào)區(qū)間;
(2)在銳角中,角,的對邊分別為,若,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐A-EFCB中,為等邊三角形,平面AEF平面EFCB,,
,,O為EF的中點.
(Ⅰ)求證:
(Ⅱ)求二面角F-AE-B的余弦值;
(Ⅲ)若BE平面AOC,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,AB是圓O的直徑,點C是圓O上異于A,B的點,直線PC⊥平面ABC,E,F(xiàn)分別是PA,PC的中點.

(1)記平面BEF與平面ABC的交線為l,試判斷直線l與平面PAC的位置關(guān)系,并加以證明;
(2)設(shè)(1)中的直線l與圓O的另一個交點為D,且點Q滿足 .記直線PQ與平面ABC所成的角為θ,異面直線PQ與EF所成的角為α,二面角E﹣l﹣C的大小為β.求證:sinθ=sinαsinβ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 是雙曲線 的右焦點,過點 的一條漸近線的垂線,垂足為 ,線段 相交于點 ,記點 的兩條漸近線的距離之積為 ,若 ,則該雙曲線的離心率是( )
A.
B.2
C. 3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=|x|+ (其中a∈R)的圖像不可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為調(diào)查了解某省屬師范大學師范類畢業(yè)生參加工作后,從事的工作與教育是否有關(guān)的情況,該校隨機調(diào)查了該校80位性別不同的2016年師范類畢業(yè)大學生,得到具體數(shù)據(jù)如表:

與教育有關(guān)

與教育無關(guān)

合計

30

10

40

35

5

40

合計

65

15

80


(1)能否在犯錯誤的概率不超過5%的前提下,認為“師范類畢業(yè)生從事與教育有關(guān)的工作與性別有關(guān)”? 參考公式: (n=a+b+c+d).
附表:

P(K2≥k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.023

6.635


(2)求這80位師范類畢業(yè)生從事與教育有關(guān)工作的頻率;
(3)以(2)中的頻率作為概率.該校近幾年畢業(yè)的2000名師范類大學生中隨機選取4名,記這4名畢業(yè)生從事與教育有關(guān)的人數(shù)為X,求X的數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,射線l:θ= 與圓C:ρ=2交于點A,橢圓Γ的方程為ρ2= ,以極點為原點,極軸為x軸正半軸建立平面直角坐標系xOy (Ⅰ)求點A的直角坐標和橢圓Γ的參數(shù)方程;
(Ⅱ)若E為橢圓Γ的下頂點,F(xiàn)為橢圓Γ上任意一點,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點F是拋物線τ:x2=2py (p>0)的焦點,點A是拋物線上的定點,且 =(2,0),點B,C是拋物線上的動點,直線AB,AC斜率分別為k1 , k2

( I)求拋物線τ的方程;
(Ⅱ)若k1﹣k2=2,點D是點B,C處切線的交點,記△BCD的面積為S,證明S為定值.

查看答案和解析>>

同步練習冊答案