20.設Sn為等差數(shù)列{an}的前n項和,若a3+a4+a5+a6=36,則S8=72.

分析 由a3+a6=a4+a5=a1+a8,和a3+a4+a5+a6=36可得a1+a8=18,然后求解s8即可.

解答 解:由等差數(shù)列的性質可得:a3+a6=a4+a5=a1+a8,
由a3+a4+a5+a6=36可得2(a1+a8)=36,故a1+a8=18.
所以s8=$\frac{8({a}_{1}+{a}_{8})}{4}$=$\frac{8×18}{2}$=72.
故答案為:72.

點評 本題為等差數(shù)列的求和問題,熟練掌握等差數(shù)列求和公式和性質是解集問題的關鍵,屬基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

10.函數(shù)f(x)=ex+2x(e是自然對數(shù)的底數(shù))的圖象在點(0,1)處的切線方程是y=3x+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知向量$\overrightarrow{a}$=(1,1),點A(-3,-1),點B為直線y=2x上的一個動點,若$\overrightarrow{AB}$∥$\overrightarrow{a}$,則點B的坐標為(2,4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,在△ABC中,∠ACB=90°,CD⊥AB于D,AD=3,CD=2,則$\frac{AC}{BC}$的值為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.求下列數(shù)列{an}的通項公式:
(1)a1=1,an+1=an+2n+1;
(2)a1=1,an+1=2nan

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知函數(shù)f(x)=x+lg($\sqrt{1+{x}^{2}}$+x)+5,且f(a)=6,則f(-a)=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.集合M={y∈Z|y=$\frac{8}{3+x}$,x∈Z},用列舉法表示是M={-1,-2,-4,-8,8,4,2,1}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.(1)求函數(shù)f(x)=x3-3x2-9x,x∈[-4,4]的最值
(2)求函數(shù)$g(x)=\frac{1}{2}{x^2}+4x-5lnx$的極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=x3-x2-ax+b(a,b∈R),當x=1時f(x)取得極值2.
(Ⅰ)求a,b的值;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,b]上的最大值.

查看答案和解析>>

同步練習冊答案