分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),各個(gè)關(guān)于a,b的方程組,解出即可;(Ⅱ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)在閉區(qū)間的最值即可.
解答 解:(Ⅰ)f′(x)=3x2-2x-a,
因?yàn)閤=1時(shí)f(x)取得極值2,
所以$\left\{\begin{array}{l}f(1)=2\\ f′(1)=0\end{array}\right.$,即$\left\{\begin{array}{l}1-1-a+b=2\\ 3-2-a=0\end{array}\right.$,
解得a=1,b=3,經(jīng)檢驗(yàn)符合題意.
(Ⅱ)由(Ⅰ)知b=3,
f(x)=x3-x2-x+3,
f′(x)=3x2-2x-1,
當(dāng)x∈(0,1)時(shí)f′(x)<0,f(x)單調(diào)遞減;
當(dāng)x∈(1,3)時(shí),f′(x)>0,f(x)單調(diào)遞增,
又f(0)=3,f(3)=18,而3<18,
故f(x)在區(qū)間[0,b]上的最大值為f(3)=18.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 橢圓的一部分 | B. | 雙曲線的一部分 | C. | 拋物線的一部分 | D. | 直線的一部分 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\{\sqrt{a_n}\}$ | B. | $\{\frac{1}{a_n}\}$ | C. | {an2} | D. | {an+1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | 4 | C. | 3 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{{2\sqrt{2}}}{3}$ | B. | $\frac{{2\sqrt{2}}}{3}$ | C. | $-\frac{1}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com