分析 (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最大值和最小值即可;
(2)求出g(x)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可.
解答 解:(1)f(x)=x3-3x2-9x,
f′(x)=3x2-6x-9=3(x2-2x-3)=3(x-3)(x+1),
令f′(x)>0,解得:x>3或x<-1,
令f′(x)<0,解得:-1<x<3,
∴f(x)在[-4,-1)遞增,在(-1,3)遞減,在(3,4]遞增,
而f(-4)=-76,f(-1)=5,f(3)=-27,f(4)=-30,
∴f(x)min=f(-4)=-76,f(x)max=f(-1)=5,
(2)$g(x)=\frac{1}{2}{x^2}+4x-5lnx$,定義域是(0,+∞),
g′(x)=x+4-$\frac{5}{x}$=$\frac{(x+5)(x-1)}{x}$,
令g′(x)>0,解得:x>1,令g′(x)<0,解得:x<1,
∴g(x)在(0,1)遞減,在(1,+∞)遞增,
∴$x=1時(shí)f(x)有極小值f(1)=\frac{9}{2},f(x)無極大值$.
點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值、極值問題,是一道基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 橢圓的一部分 | B. | 雙曲線的一部分 | C. | 拋物線的一部分 | D. | 直線的一部分 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com