函數(shù)y=
2-2x
的定義域為(  )
A、[0,+∞)
B、[1,+∞)
C、(-∞,0]
D、(-∞,1]
考點:函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)成立的條件即可求函數(shù)的定義域.
解答: 解:要使函數(shù)有意義,則2-2x≥0,
即2x≤2,解得x≤1,
即函數(shù)的定義域為(-∞,1],
故選:D.
點評:本題主要考查函數(shù)定義域的求解,根據(jù)函數(shù)成立的條件是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知x,y為正實數(shù),且x+2y=3,則
2x(y+
1
2
)
的最大值是
 

(文)已知x,y為正實數(shù),且x+2y=1,則
1
x
+
1
y
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=14,3an=3an+1+2,則使anan+2<0成立的n值是(  )
A、21B、22C、23D、24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知g(x)=ln[(m2-1)]x2-(1-m)x+1]的定義域為R,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)是奇函數(shù)的是(  )
A、y=cosx
B、y=xsinx
C、y=tanx
D、y=xcosx+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個函數(shù)中,既是奇函數(shù)又在定義域上單調(diào)遞增的是(  )
A、y=x+1
B、y=x3
C、y=tanx
D、y=log2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=
3-bi
1-2i
(i是虛數(shù)單位)的實部和虛部相等,則b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+bx+c(b,c∈R),g(x)=4-x-m•(2-x)-9(m∈R),A={x|f(x)=x-2}.
(1)若A={1},解不等式f(x)>1;
(2)若b∈Z,-3∈A,x1,x2為方程f(x)=0的兩個實根,且
4
x1
+
1
x2
=-
1
2

①求b,c的值
②若對任意的t1∈[-2,2],總存在t2∈[-2,2],使得f(t1)=g(t2)成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

試比較下列各式的大。ú粚戇^程)
(1)1-
2
2
-
3

(2)
2
-
3
3
-
4

通過上式請你推測出
n-1
-
n
n
-
n+1
(n≥2
且n∈N)的大小,并用分析法加以證明.

查看答案和解析>>

同步練習(xí)冊答案