14.已知集合A={x|-2≤x≤2},集合B=x|x-1>0},則集合A∩(∁RB)=( 。
A.{x|1<x≤2}B.{x|-2≤x<1}C.{x|-2≤x≤1}D.{x|-2≤x≤2}

分析 求出B中不等式的解集確定出B,根據(jù)全集R求出B的補(bǔ)集,找出A與B補(bǔ)集的交集即可.

解答 解:由B中不等式解得:x>1,即B={x|x>1},
∴∁RB={x|x≤1},
∵A={x|-2≤x≤2},
∴A∩(∁RB)={x|-2≤x≤1},
故選:C.

點(diǎn)評 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓方程$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{6}}{3}$,短軸長為2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線l:y=kx+m(k≠0)與y軸的交點(diǎn)為A(點(diǎn)A不在橢圓外),且與橢圓交于兩個(gè)不同的點(diǎn)P,Q,PQ的中垂線恰好經(jīng)過橢圓的下端點(diǎn)B,且與線段PQ交于點(diǎn)C,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的最小正周期是$\frac{2π}{3}$,最小值是-2,且圖象經(jīng)過點(diǎn)($\frac{5π}{9}$,0),則f(0)=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.用輾轉(zhuǎn)相除法或更相減損術(shù)求459與357的最大公約數(shù)是51.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)f(x)=log4(mx2+2x+3)的最小值為0,則m的值為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖所示,一個(gè)幾何體的三視圖分別是正方形、矩形和半圓,則此幾何體的表面積為(  )
A.B.3π+4C.D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某小區(qū)有1000戶住戶,為了解住戶對物業(yè)管理工作的滿意度,隨機(jī)抽取了50戶住戶對小區(qū)物業(yè)管理進(jìn)行評分,所評分都不低于70分,將所評分分成六組:[70,75),[75,80),…,[95,100],得到如圖所示的部分頻率分布直方圖,若評分在80分以下為不滿意,評分在[80,90)為滿意,評分在90分及其以上為非常滿意.
(Ⅰ)請估計(jì)該小區(qū)不滿意物業(yè)管理工作的居民有多少戶?并補(bǔ)全頻率分布直方圖;
(Ⅱ)在評分為“非常滿意”的住戶中,隨機(jī)抽取2戶作為代表,收集關(guān)于提高物業(yè)管理水平的建議,求選出的2戶恰好一戶評分在[90,95),一戶評分在[95,100]的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.雙曲線25x2-9y2=225的實(shí)軸長,虛軸長、離心率分別是(  )
A.10,6,$\frac{\sqrt{34}}{5}$B.6,10,$\frac{\sqrt{34}}{3}$C.10,6,$\frac{4}{5}$D.6,10,$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知命題p:?α∈R,使得sinα+2cosα=3;命題q:?x∈(0,$\frac{π}{2}$),x>sinx,則下列判斷正確的是(  )
A.p為真B.¬q為假C.p∧q為真D.p∨q為假

查看答案和解析>>

同步練習(xí)冊答案