8.函數(shù)f(x)=$\frac{x}{x-1}$在區(qū)間[2,5]上的最大值與最小值的差記為fmax-min,若fmax-min+a2-2a≤0恒成立,則a的取值范圍是( 。
A.[$\frac{1}{2}$,$\frac{3}{2}$]B.[1,2]C.[0,1]D.[1,3]

分析 求出f(x)的單調(diào)性,計算f(x)的最值,問題轉(zhuǎn)化為a2-2a+$\frac{3}{4}$≤0恒成立,解出即可.

解答 解:f(x)=$\frac{x}{x-1}$=1+$\frac{1}{x-1}$在區(qū)間[2,5]上單調(diào)遞減,
∴f(x)max=f(2)=2,f(x)min=f(5)=$\frac{5}{4}$,
fmax-min+a2-2a≤0恒成立,
即a2-2a+$\frac{3}{4}$≤0恒成立,
解得:$\frac{1}{2}$≤a≤$\frac{3}{2}$,
故選:A.

點評 本題考查了函數(shù)恒成立問題,考查求函數(shù)的最值問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=alnx-x2,(a∈R)
(1)當(dāng)a=2時,求函數(shù)y=f(x)在區(qū)間[$\frac{1}{2}$,2]上的最大值;
(2)若存在x∈[1,+∞)使得f(x)≥0成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=-$\frac{1}{3}$x3+$\frac{1}{2}$x2+2ax.
(1)?p≠q∈($\frac{2}{3}$,1),$\frac{f(p)-f(q)}{p-q}$>0恒成立,求實數(shù)a的取值范圍;
(2)?p≠q∈($\frac{2}{3}$,1),$\frac{f(p+2)-f(q+2)}{p-q}$>1恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)x<0,且1<bx<ax,則(  )
A.0<b<a<1B.0<a<b<1C.1<b<aD.1<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.命題“?x>1,使得x2≥2”的否定是?x>1,使得x2<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.五位同學(xué)排成一排,其中甲、乙必須在一起,而丙、丁不能在一起的排法有24種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C的中心在坐標(biāo)原點,焦點在x 軸上,離心率為$\frac{1}{2}$,短軸的一個端點為(0,$\sqrt{3}$).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線 l的斜率存在,且與橢圓C相交于A、B兩點(A、B異于頂點),且以AB為直徑的圓過橢圓的右頂點,求證:直線l過定點,并求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知一組數(shù)據(jù)1,3,5,7的方差為n,則在二項式(2x-$\frac{1}{\root{3}{x}}$)n的展開式所有項中任取一項,取到有理項的概率為(  )
A.$\frac{1}{6}$B.$\frac{1}{12}$C.$\frac{1}{3}$D.$\frac{5}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在等比數(shù)列{an}中,a2a3a4=8,a7=8,則a1=(  )
A.1B.±1C.2D.±2

查看答案和解析>>

同步練習(xí)冊答案