8.不等式組$\left\{\begin{array}{l}{x-y≤0}\\{x+y≥-2}\\{x-2y≥-2}\end{array}\right.$的解集記為D,若(a,b)∈D,則z=2a-3b的最大值是( 。
A.1B.4C.-1D.-4

分析 由題意作平面區(qū)域,從而可得當(dāng)a=-1,b=-1時有最小值,從而求得.

解答 解:由題意作平面區(qū)域如下,
由$\left\{\begin{array}{l}{y=x}\\{y=-x-2}\end{array}\right.$,解得A(-1,-1),
結(jié)合圖象可知,
當(dāng)a=-1,b=-1,即過點(diǎn)A時,
z=2a-3b有最大值為1,
故選:A.

點(diǎn)評 本題考查了線性規(guī)劃問題,同時考查了數(shù)形結(jié)合的思想應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知數(shù)列{an}(n∈N*)滿足:an=$\left\{\begin{array}{l}{n(n=1,2,3,4,5,6)}\\{-{a}_{n-3}(n≥7且n∈N^*)}\end{array}\right.$,則a2012=-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.與25°角終邊相同的角是( 。
A.385°B.-325°C.335°D.-685°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x(x>0)}\\{a(x=0)}\\{{x}^{2}+bx(x<0)}\end{array}\right.$為奇函數(shù).
(1)求a,b的值,并寫出函數(shù)的單調(diào)區(qū)間;
(2)解不等式f(x)>f(-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=sinx+tanx,則使不等式f(sinθ)+f(cosθ)≥0成立的θ取值范圍是(  )
A.[2kπ+$\frac{π}{4}$,2kπ+$\frac{5π}{4}$](k∈Z)B.[2kπ-$\frac{3π}{4}$,2kπ+$\frac{π}{4}$](k∈Z)
C.[2kπ-$\frac{π}{4}$,2kπ+$\frac{3π}{4}$](k∈Z)D.[2kπ+$\frac{3π}{4}$,2kπ+$\frac{7π}{4}$](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=2cosxsin(x+$\frac{π}{3}$)-$\sqrt{3}$sin2x+sinxcosx.
①求f(x)的最小值及取得最小值時相應(yīng)的x值;
②若x∈[$\frac{π}{12}$,$\frac{7π}{12}$].求滿足f(x)=1的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,角A,B,C的對邊分別為a,b,c,若a2=b2+$\frac{1}{4}{c^2}$,則$\frac{acosB}{c}$=$\frac{5}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖1,在矩形ABCD中,AB=$\sqrt{3}$,BC=4,E是邊AD上一點(diǎn),且AE=3,把△ABE沿BE翻折,使得點(diǎn)A到A′,滿足平面A′BE與平面BCDE垂直(如圖2).
(1)若點(diǎn)P在棱A′C上,且CP=3PA′,求證:DP∥平面A′BE;
(2)求二面角B-A′E-D的余弦值的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在下列函數(shù)中既是奇函數(shù),又是在區(qū)間(0,+∞)上單調(diào)遞減的函數(shù)為( 。
A.$y=ln\frac{1}{|x|}$B.y=x-1C.$y={({\frac{1}{2}})^x}$D.y=x3+x

查看答案和解析>>

同步練習(xí)冊答案