如直線l1、l2的斜率是二次方程x2-4x+1=0的兩根,那么l1與l2的夾角是( 。
A、
π
3
B、
π
4
C、
π
6
D、
π
8
考點(diǎn):兩直線的夾角與到角問(wèn)題
專題:
分析:設(shè)出兩直線的斜率,由一元二次方程根與系數(shù)關(guān)系得到兩直線斜率的和與積,代入夾角公式求得l1與l2的夾角.
解答: 解:設(shè)直線l1,l2的斜率分別為 k1,k2,l1與l2的夾角為θ,
則 k1+k2=4,k1•k2=1,
k1=2-
3
,k2=2+
3

則tanθ=|
k2-k1
1+k1k2
|=|
2+
3
-2+
3
1+(2-
3
)(2+
3
)
|=
3

∴θ=
π
3

故選:A.
點(diǎn)評(píng):本題考查了兩直線的夾角公式,考查了一元二次方程的根與系數(shù)關(guān)系,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,△DBC,△DEF為邊長(zhǎng)為2的等邊三角形,若AB=2,且P1,P2,P3是線段EF上的四等分點(diǎn),則
AC
AP1
+
AC
AP2
+
AC
AP3
的值是(  )
A、54
B、18
C、18
3
D、-18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠共有10臺(tái)機(jī)器,生產(chǎn)一種儀器元件,由于受生產(chǎn)能力和技術(shù)水平等因素限制,會(huì)產(chǎn)生一定數(shù)量的次品.根據(jù)經(jīng)驗(yàn)知道,若每臺(tái)機(jī)器產(chǎn)生的次品數(shù)P(萬(wàn)件)與每臺(tái)機(jī)器的日產(chǎn)量x(萬(wàn)件)(4≤x≤10)之間滿足關(guān)系:P=
1
10
x2-
77
15
lnx+3
.已知每生產(chǎn)1萬(wàn)件合格的元件可以盈利2萬(wàn)元,但每產(chǎn)生1萬(wàn)件次品將虧損1萬(wàn)元.(利潤(rùn)=盈利-虧損)
(1)試將該工廠每天生產(chǎn)這種元件所獲得的利潤(rùn)y(萬(wàn)元)表示為x的函數(shù);
(2)當(dāng)每臺(tái)機(jī)器的日產(chǎn)量x(萬(wàn)件)為多少時(shí)所獲得的利潤(rùn)最大,最大利潤(rùn)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)圓柱的表面積為S,當(dāng)圓柱體積最大時(shí),圓柱的高為( 。
A、
S
B、
3πS
C、
6πS
D、3π
6πS

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)M是曲線
x2
25
+
y2
9
=1(x≠±5)上任意一點(diǎn),點(diǎn)A,B的坐標(biāo)分別為(-5,0),(5,0),直線AM與直線BM的斜率之積為( 。
A、-
9
25
B、
9
25
C、-
3
5
D、
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=Asin(ωx+φ)+b的圖象如圖,則f(x)的解析式與S=f(0)+f(1)+f(2)+…+f(2010)的值分別為( 。
A、f(x)=
1
2
sin2πx+1,S=2010
B、f(x)=sin
π
2
x+1,S=2011
1
2
C、f(x)=
1
2
sin
π
2
x+1,S=2010
1
2
D、f(x)=
1
2
sin
π
2
x+1,S=2011

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某建材商場(chǎng)國(guó)慶期間搞促銷活動(dòng),規(guī)定:顧客購(gòu)物總金額不超過(guò)800元,不享受任何折扣,如果顧客購(gòu)物總金額超過(guò)800元,超過(guò)800元部分享受一定的折扣優(yōu)惠,按下表折扣分別累計(jì)計(jì)算:
可以享受折扣優(yōu)惠金額折扣率
     不超過(guò)500元的部分5%
     超過(guò)500元的部分 10%
某人在此商場(chǎng)購(gòu)物總金額為x元,可以獲得的折扣金額為y元.
(1)寫(xiě)出y關(guān)于x的解析式.
(2)若y=30,求此人購(gòu)物實(shí)際所付金額.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=loga
2x-1
2x+1
(a>0且a≠1)
(1)求f(x)的定義域和值域;
(2)判斷f(x)在定義域上的單調(diào)性,并給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=2|x-1|的定義域?yàn)閇0,m]時(shí)值域?yàn)閇1,2],則m的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案