某工廠共有10臺機器,生產(chǎn)一種儀器元件,由于受生產(chǎn)能力和技術水平等因素限制,會產(chǎn)生一定數(shù)量的次品.根據(jù)經(jīng)驗知道,若每臺機器產(chǎn)生的次品數(shù)P(萬件)與每臺機器的日產(chǎn)量x(萬件)(4≤x≤10)之間滿足關系:P=
1
10
x2-
77
15
lnx+3
.已知每生產(chǎn)1萬件合格的元件可以盈利2萬元,但每產(chǎn)生1萬件次品將虧損1萬元.(利潤=盈利-虧損)
(1)試將該工廠每天生產(chǎn)這種元件所獲得的利潤y(萬元)表示為x的函數(shù);
(2)當每臺機器的日產(chǎn)量x(萬件)為多少時所獲得的利潤最大,最大利潤為多少?
考點:利用導數(shù)求閉區(qū)間上函數(shù)的最值
專題:計算題,應用題,導數(shù)的綜合應用
分析:(1)由題意得,所獲得的利潤為y=10[2(x-P)-P]=10(2x-3P),將P=
1
10
x2-
77
15
lnx+3
代入化簡即可;
(2)求導y′=-6x+20+
154
x
=
-6x2+20x+154
x
=-
2(x-7)(3x+11)
x
,由導數(shù)確定單調(diào)性再求最值.
解答: 解:(1)由題意得,
所獲得的利潤為y=10[2(x-P)-P]=10(2x-3P),
又由P=
1
10
x2-
77
15
lnx+3
得,
即y=-3x2+20x+154lnx-90,(4≤x≤10)
(2)由(1)知,
y′=-6x+20+
154
x
=
-6x2+20x+154
x
=-
2(x-7)(3x+11)
x

∴當4≤x<7時,y'>0,函數(shù)在[4,7]上為增函數(shù);
當7<x≤10時,y'<0,函數(shù)在[6,10]上為減函數(shù),
∴當x=7時,函數(shù)取得極大值,且為最大值
,最大利潤為154ln7-97(萬元).
即:當每臺機器的日產(chǎn)量為7萬件時所獲得的利潤最大,最大利潤為154ln7-97萬元.
點評:本題考查了實際問題轉化為數(shù)學問題的能力及導數(shù)的綜合應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(
1
3
)x
,x∈[-1,1],函數(shù)g(x)=f2(x)-2af(x)+3的最小值為h(a).
(1)求h(a)的表達式.    
(2)是否存在實數(shù)m,n同時滿足以下條件:①m>n>3; ②當h(a)的定義域為[m,n]時,值域為[n2,m2],若存在,求出m,n的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)在(1,+∞)上為增函數(shù)的是( 。
A、y=-|x-1|
B、y=x+
2
x
C、y=
3x+1
x+1
D、y=x(2-x)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2lnx+ax2-1(a∈R).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設a=1,若不等式f(1+x)+f(1-x)-m<0對任意的0<x<1恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)是R上的奇函數(shù),且x>0時,f(x)=2x,則x<0時,f(x)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

國慶期間襄陽某體育用品專賣店抓住商機大量購進某特許商品進行銷售,該特許產(chǎn)品的成本為20元/個,每日的銷售量y(單位:個)與單價x(單位:元)之間滿足關系式y(tǒng)=
a
x-20
+4(x-50)2
,(其中20<x<50,a為常數(shù)).當銷售價格為40元/個時,每日可售出該商品401個.
(1)求a的值及每日銷售該特許產(chǎn)品所獲取的總利潤L(x);
(2)試確定單價x的值,使所獲得的總利潤L(x)最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)定義域是{x|x≠
k
2
,k∈Z,x∈R},且f(x)+f(2-x)=0,f(x+1)=-
1
f(x)
,當
1
2
<x<1時,f(x)=3x
(1)證明:f(x)為奇函數(shù);
(2)求f(x)在(-1,-
1
2
)
上的表達式;
(3)是否存在正整數(shù)k,使得x∈(2k+
1
2
,2k+1)
時,log3f(x)>x2-kx-2k有解,若存在求出k的值,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如直線l1、l2的斜率是二次方程x2-4x+1=0的兩根,那么l1與l2的夾角是(  )
A、
π
3
B、
π
4
C、
π
6
D、
π
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),且當x≤0時,f(x)=x2+2x.
(1)寫出函數(shù)f(x),x∈R的解析式;
(2)若函數(shù)g(x)=f(x)-2ax+2,x∈[1,2],求函數(shù)g(x)的最小值h(a).

查看答案和解析>>

同步練習冊答案