【題目】如圖,多面體中,四邊形為平行四邊形,其中,,,等邊所在平面與平面垂直,平面,且.
(Ⅰ)點在棱上,且,為的重心,求證:平面;
(Ⅱ)求平面與平面所成銳二面角的余弦值.
【答案】見解析
【解析】(Ⅰ)如圖,在棱上取點,使得;連接并延長,交于點.
則在中,又,
所以,
又四邊形為平行四邊形,
所以,
所以. -----------------2分
在中,為重心,
所以,
又,
所以.
又因為,,
所以平面平面.
又平面,
所以平面. -----------------------------5分
(Ⅱ)在中,,,,
由余弦定理可得
.
所以.
取的中點,連接、.
在中,,
所以,且.
又因為平面平面,平面平面,
所以平面. -----------------------------7分
又中,,,
所以,且.
如圖,以為坐標原點,分別以所在直線為軸建立空間直角坐標系.
則,,,,,.
則,,,.
設(shè)平面的法向量為,
則由,可得
整理得.
令,則,.
所以為平面的一個法向量. ----------------------------9分
設(shè)平面的法向量為,
則由,可得.
整理得.
令,則,.
所以為平面的一個法向量. -----------------------------10分
所以.
-----------------------------11分
設(shè)平面與平面所成銳二面角為,則. -------12分
【命題意圖】本題考查空間中線面平行的證明、空間二面角的求解以及向量的基本運算等,考查基本的空間想象能力和邏輯推理能力、運算能力等.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若集合A={x|kx2﹣2x﹣1=0}只有一個元素,則實數(shù)k的取值集合為( )
A.{﹣1}
B.{0}
C.{﹣1,0}
D.(﹣∞,﹣1]∪{0}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
①已知集合M滿足M{1,2,3},且M中至少有一個奇數(shù),這樣的集合M有6個;
②已知函數(shù)f(x)= 的定義域是R,則實數(shù)a的取值范圍是(﹣12,0);
③函數(shù)f(x)=loga(x﹣3)+1(a>0且a≠1)圖象恒過定點(4,2);
④已知函數(shù)f(x)=x2+bx+c對任意實數(shù)t都有f(3+t)=f(3﹣t),則f(1)>f(4)>f(3).
其中正確的命題序號是(寫出所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知橢圓過點A(2,1),離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線與橢圓相交于B,C兩點(異于點A),線段BC被y軸平分,且,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,且過點.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知橢圓的左焦點為,直線與橢圓交于不同兩點,(都在軸上方),且.
(。┤,求的面積;
(ⅱ)直線是否恒過定點?若過定點,求出該定點的坐標;若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】菜農(nóng)定期使用低害殺蟲農(nóng)藥對蔬菜進行噴灑,以防止害蟲的危害,但采集上市時蔬菜仍存有少量的殘留農(nóng)藥,食用時需要用清水清洗干凈,下表是用清水(單位:千克)清洗該蔬菜1千克后,蔬菜上殘留的農(nóng)藥(單位:微克)的統(tǒng)計表:
(1)令,利用給出的參考數(shù)據(jù)求出關(guān)于的回歸方程.(,精確到0.1)
參考數(shù)據(jù):,,
其中,
(2)對于某種殘留在蔬菜上的農(nóng)藥,當它的殘留量不高于20微克時對人體無害,為了放心食用該蔬菜,請估計至少需用用多少千克的清水清洗1千克蔬菜?(精確到0.1,參考數(shù)據(jù))
附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年新高一學(xué)生入學(xué)后,為了了解新生學(xué)業(yè)水平,某區(qū)對新生進行了素質(zhì)測查,隨機抽取了50名學(xué)生的數(shù)學(xué)成績(均低于100分),其相關(guān)數(shù)據(jù)統(tǒng)計如下:
分數(shù)段 | 頻數(shù) | 選擇題≥24分 |
5 | 2 | |
10 | 4 | |
15 | 12 | |
10 | 6 | |
5 | 4 | |
5 | 5 |
(1)若全區(qū)高一新生有5000人,試估計成績不低于60分的人數(shù);
(2)根據(jù)表格數(shù)據(jù)試估計全區(qū)新生數(shù)學(xué)的平均成績(同一分數(shù)段的數(shù)據(jù)取該區(qū)間的中點值作為代表,如區(qū)間的中點值為75);
(3)從成績在中抽取選擇題得分不低于24分的3名學(xué)生進行具體分析,求至少有2名學(xué)生成績在內(nèi)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com