13.已知復(fù)數(shù)$z=\frac{{1+2{i^3}}}{2+i}$(i為虛數(shù)單位),則z在復(fù)平面內(nèi)所對應(yīng)點的坐標(biāo)為(  )
A.(1,0)B.(-1,0)C.(0,1)D.(0,-1)

分析 利用復(fù)數(shù)定義所在、幾何意義即可得出.

解答 解:∵復(fù)數(shù)$z=\frac{{1+2{i^3}}}{2+i}$=$\frac{1-2i}{2+i}$=$\frac{(1-2i)(2-i)}{(2+i)(2-i)}$=$\frac{-5i}{5}$=-i.
故其對應(yīng)的點的坐標(biāo)為(0,-1),
故選:D.

點評 本題考查了復(fù)數(shù)的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知兩集合$A=\left\{{x\left|{{x^2}+x-2≤0}\right.}\right\},B=\left\{{x\left|{\frac{2x-1}{x}>0}\right.}\right\}$,則A∩B=( 。
A.[-2,0)B.$({\frac{1}{2},1}]$C.$[{-2,0})∪({\frac{1}{2},1}]$D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)數(shù)列{an}的前n項和為Sn.若a2=12,Sn=kn2-1(n∈N*),則數(shù)列{$\frac{1}{{S}_{n}}$}的前n項和為$\frac{n}{2n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)=2xlnx,g(x)=-x2+ax-3.
(1)求函數(shù)f(x)的最小值;
(2)若存在x∈(0,+∞),使f(x)≤g(x)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.給出命題p:若平面α與平面β不重合,且平面α內(nèi)有不共線的三點到平面β的距離相等,則α∥β;命題q:向量$\overrightarrow{a}$=(-2,-1),$\overrightarrow$=(λ,1)的夾角為鈍角的充要條件為λ∈(-$\frac{1}{2}$,+∞).關(guān)于以上兩個命題,下列結(jié)論中正確的是( 。
A.命題“p∨q”為假B.命題“p∧q”為真C.命題“p∨¬q”為假D.命題“p∧¬q”為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.等差數(shù)列{an}的前n項和為Sn,若$\frac{{S}_{n}}{{a}_{n}}$=$\frac{n+1}{2}$,則下列結(jié)論中正確的是( 。
A.$\frac{{a}_{2}}{{a}_{3}}$=2B.$\frac{{a}_{2}}{{a}_{3}}$=$\frac{3}{2}$C.$\frac{{a}_{2}}{{a}_{3}}$=$\frac{2}{3}$D.$\frac{{a}_{2}}{{a}_{3}}$=$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.方程ex=5-x的根所在的大致區(qū)間為( 。
A.($\frac{1}{2}$,1)B.(1,$\frac{3}{2}$)C.($\frac{3}{2}$,2)D.(2,$\frac{5}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某市一次全市高中男生身高統(tǒng)計調(diào)查數(shù)據(jù)顯示:全市100 000名男生的身高服從正態(tài)分布N(168,16).現(xiàn)從某學(xué)校高三年級男生中隨機抽取50名測量身高,測量發(fā)現(xiàn)被測學(xué)生身高全部介于160cm和184cm之間,將測量結(jié)果按如下方式分成6組:第一組[160,164],第二組[164,168],…,第6組[180,184],如圖是按上述分組方法得到的頻率分布直方圖.
(Ⅰ)試評估該校高三年級男生在全市高中男生中的平均身高狀況;
(Ⅱ)求這50名男生身高在172cm以上(含172cm)的人數(shù);
(Ⅲ)在這50名男生身高在172cm以上(含172cm)的人中任意抽取2人,該2人中身高排名(從高到低)在全市前130名的人數(shù)記為ξ,求ξ的數(shù)學(xué)期望.
參考數(shù)據(jù):若ξ-N(μ,σ2),則p(μ-σ<ξ≤μ+σ)=0.6826,p(μ-2σ<ξ≤μ+2σ)=0.9544,p(μ-3σ<ξ≤μ+3σ)=0.9974.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.圓x2+y2-4x+2y+2=0的圓心坐標(biāo)為(2,-1),半徑為$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案