5.方程ex=5-x的根所在的大致區(qū)間為(  )
A.($\frac{1}{2}$,1)B.(1,$\frac{3}{2}$)C.($\frac{3}{2}$,2)D.(2,$\frac{5}{2}$)

分析 方程ex=5-x的解轉(zhuǎn)化為函數(shù)f(x)=ex+x-5的零點(diǎn)問題,把區(qū)間端點(diǎn)函數(shù)值代入驗(yàn)證即可.

解答 解;由ex=5-x得ex+x-5=0,
設(shè)f(x)=ex+x-5,則函數(shù)f(x)單調(diào)遞增,
∴f(0)=e+1-5<0
f($\frac{3}{2}$)=${e}^{\frac{3}{2}}$+$\frac{3}{2}$-5>$(\frac{5}{2})^{\frac{3}{2}}$-$\frac{7}{2}$=$\sqrt{\frac{125}{8}}$-$\sqrt{\frac{98}{8}}$>0
∴f(x)=ex+x-5在區(qū)間(1,$\frac{3}{2}$有一個(gè)零點(diǎn),
即方程ex+x=5在區(qū)間(1,$\frac{3}{2}$)有解,
故選:B.

點(diǎn)評(píng) 考查方程的根和函數(shù)零點(diǎn)之間的關(guān)系,即函數(shù)零點(diǎn)的判定定理,體現(xiàn)了轉(zhuǎn)化的思想方法,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)x∈[0,2π],利用單位圓解不等式sin(x+$\frac{π}{4}$)≥-$\frac{\sqrt{2}}{2}$可得x∈$\frac{3π}{2}$≤x≤$\frac{7π}{4}$或0≤x≤$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.直線l1,l2,l3相交于A(2,5),B(-2,1),C(8,-3).如圖所示:
(1)用不等式組表示圖中的陰影部分;
(2)設(shè)目標(biāo)函數(shù)為z=3x-4y,圖中的陰影部分是對(duì)x,y的約束條件,求在此約束條件下,目標(biāo)函數(shù)的最大值和最小值;
(3)設(shè)目標(biāo)函數(shù)為z=3x+4y,圖中的陰影部分是對(duì)x,y的約束條件,求在此約束條件下,目標(biāo)函數(shù)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知復(fù)數(shù)$z=\frac{{1+2{i^3}}}{2+i}$(i為虛數(shù)單位),則z在復(fù)平面內(nèi)所對(duì)應(yīng)點(diǎn)的坐標(biāo)為( 。
A.(1,0)B.(-1,0)C.(0,1)D.(0,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)i是虛數(shù)但單位,則復(fù)數(shù)$z=\frac{2i+3}{1-i}$的共軛復(fù)數(shù)的虛部為( 。
A.$-\frac{1}{2}$B.$-\frac{5}{2}$C.$\frac{1}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.方程4x=2x+1-1的解是x=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某高校從2015年招收的大一新生中,隨機(jī)抽取60名學(xué)生,將他們的2015年高考數(shù)學(xué)成績(jī)(滿分150分,成績(jī)均不低于90分的整數(shù))分成六段[90,100),[100,110)…[140,150),后得到如圖所示的頻率分布直方圖.
(1)求圖中實(shí)數(shù)a的值;
(2)若該校2015年招收的大一新生共有960人,試估計(jì)該校招收的大一新生2015年高考數(shù)學(xué)成績(jī)不低于120分的人數(shù);
(3)若用分層抽樣的方法從數(shù)學(xué)成績(jī)?cè)赱90,100)與[140,150]兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任取2人,求至少有1人在分?jǐn)?shù)段[90,100)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知隨機(jī)變量ξ服從正態(tài)分布N(1,δ2),P(ξ≤-1)=0.012,則P(1<ξ<3)=( 。
A.0.488B.0.494C.0.502D.0.512

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在長(zhǎng)為10cm的線段AB上任取一點(diǎn)C,現(xiàn)作一矩形,鄰邊長(zhǎng)分別等于AC,CB的長(zhǎng),則該矩形面積不小于9cm2的概率為( 。
A.$\frac{4}{5}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案