已知非零向量
AB
AC
滿足
AB
|
AB|
+
AC
|
AC
|
=λ(
AB
+
AC
),(λ>0)且
AB
|
AB|
AC
|
AC
|
=
1
2
,
BC
=2,則△ABC的周長(zhǎng)為
 
考點(diǎn):向量加減混合運(yùn)算及其幾何意義
專題:平面向量及應(yīng)用
分析:首先,根據(jù)已知條件,得到相應(yīng)三角形為等邊三角形,然后,求解其周長(zhǎng).
解答: 解:非零向量
AB
、
AC
滿足
AB
|
AB|
+
AC
|
AC
|
=λ(
AB
+
AC
),(λ>0)
不妨取|
AB
|=|
AC
|,
AB
|
AB|
AC
|
AC
|
=
1
2
,
∴∠BAC=60°
故答案為:6.
點(diǎn)評(píng):本題重點(diǎn)考查了平面向量的基本運(yùn)算、數(shù)量積的運(yùn)算性質(zhì)等知識(shí),屬于中檔題.解題關(guān)鍵是理解數(shù)量積的運(yùn)算性質(zhì)等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知三棱錐P-ABC中,∠ACB=90°,BC=4,AB=20,D為AB的中點(diǎn),且△PDB是等邊三角形,PA⊥PC.
(1)求證:平面PAC⊥平面ABC;
(2)求二面角D-AP-C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,三棱錐A-BCD中,DC⊥BC,BC=2
3
,CD=AC=2,AB=AD=2
2
.證明:AB⊥CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(1,x),
b
=(x2+x,-x),解關(guān)于x的不等式
a
b
+2>m(
2
a
b
+1)(其中m是滿足m≤-2的常數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

經(jīng)過(guò)兩圓x2+y2=4和x2+y2-10x+16=0的公共點(diǎn)且過(guò)P(4,2)的圓的個(gè)數(shù)為
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)向量
a
b
不共線,向量
c
a
b
,且
a
、
b
、
c
有共同的起點(diǎn)0,λ+μ=1,試證:
a
、
b
、
c
的終點(diǎn)在同一條直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
,
b
,求滿足方程組
2
x
-
y
=
a
-
x
+3
y
=
b
的向量
x
,
y

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+(2+lga)x+lgb,且f(-1)=-2,如果對(duì)于一切實(shí)數(shù)x都有f(x)≥2x,求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(α)=
cos(
π
2
+α)cos(2π+α)sin(-α+
3
2
π)
sin(α+
7
2
π)sin(-3π-α)

(1)化簡(jiǎn)f(α);
(2)若α是第三象限角,且cos(α-
3
2
π)=
1
5
,求f(α).

查看答案和解析>>

同步練習(xí)冊(cè)答案