圓心為(1,2),半徑為1的圓的標(biāo)準(zhǔn)方程為( 。
A、x2+(y-2)2=1
B、x2+(y+2)2=1
C、(x-1)2+(y-2)2=1
D、(x+1)2+(y+2)2=1
考點(diǎn):圓的標(biāo)準(zhǔn)方程
專題:直線與圓
分析:由圓心為(1,2),半徑為1,可直接寫出圓的標(biāo)準(zhǔn)方程.
解答: 解:∵圓心為(1,2),半徑為1,
∴圓的標(biāo)準(zhǔn)方程為(x-1)2+(y-2)2=1.
故選C.
點(diǎn)評(píng):本題考查圓的方程,考查學(xué)生對(duì)圓的方程的認(rèn)識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)蜂巢里有1只蜜蜂.第1天它飛出去找回5個(gè)伙伴;第2天,6只蜜蜂飛出去,各自找回5個(gè)伙伴…,如果這個(gè)找伙伴的過(guò)程繼續(xù)下去,第6天所有的蜜蜂飛出去,一共找回( 。﹤(gè)伙伴.
A、55986
B、38880
C、46656
D、233280

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

隨機(jī)變量X的分布列如下表,且E(X)=1.1,則D(X)=
 

X 0 1 x
P
1
5
p
3
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某畢業(yè)生參加人才招聘會(huì),分別向甲、乙、丙、丁四個(gè)公司投遞了個(gè)人簡(jiǎn)歷,假定該畢業(yè)生得到每個(gè)公司面試的概率均為p,且三個(gè)公司是否讓其面試是相互獨(dú)立的.記X為該畢業(yè)生得到面試的公司個(gè)數(shù).若P(X=0)=
1
81
,則隨機(jī)變量X的數(shù)學(xué)期望E(X)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=f(x)(x∈R)滿足f(x-1)=f(x+1),且x∈[-1,1]時(shí),f(x)=|x|,函數(shù)g(x)=
sinπx(x>0)
-
1
x
  (x<0)
,則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]上的零點(diǎn)個(gè)數(shù)為( 。
A、10B、9C、8D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+2bx過(guò)(1,2)點(diǎn),若數(shù)列{
1
f(n)
}
的前n項(xiàng)和為Sn,則S2013的值為( 。
A、
2012
2011
B、
2010
2011
C、
2013
2012
D、
2013
2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a,b是方程x2+(cotθ)x-cosθ=0的兩個(gè)不等實(shí)根,那么過(guò)點(diǎn)A(a,a2)和B(b,b2)的直線與圓x2+y2=1的位置關(guān)系是(  )
A、相離B、相切
C、相交D、隨θ的值而變化

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M是滿足下列性質(zhì)函數(shù)的f(x)的全體,在定義域D內(nèi)存在x0,使得f(x0+1)=f(x0)+f(1)成立.
(1)函數(shù)f(x)=
1
x
,g(x)=x2是否屬于集合M?分別說(shuō)明理由.
(2)若函數(shù)f(x)=lg
a
x2+1
屬于集合M,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(x,y)的坐標(biāo)x,y滿足
x-
3
y+2≥0
3
x-y≤0
y≥0
,則x2+y2-4x的取值范圍是( 。
A、[0,12]
B、[-1,12]
C、[3,16]
D、[-1,16]

查看答案和解析>>

同步練習(xí)冊(cè)答案