如圖,已知ABCD-A1B1C1D1是底面為正方形的長(zhǎng)方體,A1D1=2,A1A=2
3
,點(diǎn)P為動(dòng)點(diǎn),
(1)當(dāng)P為AD1得中點(diǎn)時(shí),求異面直線AA1與B1P所成角的余弦值;
(2)當(dāng)PB1與平面AA1D1所成角的正切值的最大值.
考點(diǎn):直線與平面所成的角,異面直線及其所成的角
專題:空間角
分析:(1)過(guò)點(diǎn)P作PE⊥A1D1,垂足為E,連接B1E,則PE∥AA1,可得∠B1PE是異面直線AA1與B1P所成的角,在Rt△B1PE中,利用余弦函數(shù)可求異面異面直線AA1與B1P所成角的余弦值.
(2)由(1)知,B1A1⊥平面AA1D1,故∠B1PA1是PB1與平面AA1D1所成的角且tan∠B1PA1=
B1A1
A1P
=
2
A1P
,當(dāng)A1P最小時(shí),tan∠B1PA1最大,由此可得結(jié)論.
解答: 解:(1)過(guò)點(diǎn)P作PE⊥A1D1,垂足為E,連接B1E(如圖),
則PE∥AA1,∴∠B1PE是異面直線AA1與B1P所成的角.
ABCD-A1B1C1D1是底面為正方形的長(zhǎng)方體,A1D1=2,A1A=2
3
,
∴A1B1=A1D1=2,A1E=
1
2
A1D1=1.
又PE=
1
2
AA1=
3

∴在Rt△B1PE中,B1P=
5+3
=2
2
,
cos∠B1PE=
PE
B1P
=
3
2
2
=
6
4

∴異面異面直線AA1與B1P所成角的余弦值為
6
4

(2)由(1)知,B1A1⊥平面AA1D1,
∴∠B1PA1是PB1與平面AA1D1所成的角,
且tan∠B1PA1=
B1A1
A1P
=
2
A1P
,
當(dāng)A1P最小時(shí),tan∠B1PA1最大,
這時(shí)A1P⊥AD1,由A1P=
A1D1A1A
AD1
=
3
,
得tan∠B1PA1=
2
3
3
,
即PB1與平面AA1D1所成角的正切值的最大值為
2
3
3
點(diǎn)評(píng):本題考查線線角、線面角的求法,解題的關(guān)鍵是正確作出線線角與線面角,注意空間思維能力的培養(yǎng),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a∈R,b∈R+,e為自然數(shù)的底數(shù),則[
1
2
ea-ln(2b)]2+(a-b)2的最小值為( 。
A、(1-ln2)2
B、2(1-ln2)2
C、1+ln2
D、
2
(1-ln2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=x2+bx+c(b,c∈R).
(1)若f(-1)=f(2),且不等式x≤f(x)≤2|x-1|+1對(duì)x∈[0,2]恒成立,求函數(shù)f(x)的解析式;
(2)若c<0,且函數(shù)f(x)在[-1,1]上有兩個(gè)零點(diǎn),求2b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
3
sinxcosx+3sin2x-
3
2

(1)求f(x)的最小正周期及f(
π
12
);
(2)求y=f(x)的單調(diào)增區(qū)間;
(3)當(dāng)x∈[
π
3
,
6
]時(shí),求y=f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,PD⊥平面ABCD,AD⊥PC,AD∥BC,PD:DC:BC=1:1:
2
.求:
(1)直線PB與與平面ABCD所成角的大。
(2)直線PB與平面PDC所成角的大。
(3)直線PC與平面PBD所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四面體OABC各棱長(zhǎng)為1,D是棱OA的中點(diǎn),則異面直線BD與AC所成角的余弦值( 。
A、
3
3
B、
1
4
C、
3
6
D、
2
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

F1,F(xiàn)2是雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦點(diǎn),過(guò)F1的直線l與C的左右兩支分別交于AB兩點(diǎn),若BF2⊥AB,且線段AB,BF2,AF2長(zhǎng)度成等差數(shù)列,則e=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三棱柱ABC-A1B1C1中,△ABC是以AC為斜邊的等腰直角三角形,且B1A=B1C=B1B=AC=2.
(Ⅰ)求證:平面B1AC⊥底面ABC;
(Ⅱ)求B1C與平面ABB1A1所成角的正弦值;
(Ⅲ)若E,F(xiàn)分別是線段A1C1,C1C的中點(diǎn),問(wèn)在線段B1F上是否存在點(diǎn)P,使得EP∥平面ABB1A1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知M、N分別是正方體ABCD-A′B′C′D′的棱BB′和B′C′的中點(diǎn),求:
(1)MN和CD′所成的角;
(2)MN和AD所成的角.

查看答案和解析>>

同步練習(xí)冊(cè)答案