【題目】在正方體ABCD﹣A1B1C1D1中,E為DD1的中點,則下列直線中與平面ACE平行的是(
A.BA1
B.BD1
C.BC1
D.BB1

【答案】B
【解析】解:連結(jié)BD1 , AC、BD,設(shè)AC∩BD=O,連結(jié)OE, ∵在正方體ABCD﹣A1B1C1D1中,E為DD1的中點,
∴O是BD中點,∴OE∥BD1 ,
∵OE平面ACE,BD1平面ACE,
∴BD1∥平面ACE.
故選:B.

【考點精析】關(guān)于本題考查的棱柱的結(jié)構(gòu)特征和直線與平面平行的判定,需要了解兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形;平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點P(t,t),點M是圓O1:x2+(y﹣1)2= 上的動點,點N是圓O2:(x﹣2)2+y2= 上的動點,則|PN|﹣|PM|的最大值是(
A.1
B. ﹣2
C.2+
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線l的方程為y=kx+b(其中k的值與b無關(guān)),圓M的方程為x2+y2﹣2x﹣4=0.
(1)如果不論k取何值,直線l與圓M總有兩個不同的交點,求b的取值范圍;
(2)b=1,l與圓交于A,B兩點,求|AB|的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】按下列程序框圖運算,則輸出的結(jié)果是(
A.42
B.128
C.170
D.682

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在R上恒不為零的函數(shù),且對任意的x、y∈R都有f(x)f(y)=f(x+y),若a1= ,an=f(n)(n∈N*),則數(shù)列{an}的前n項和Sn的取值范圍是(
A.[ ,1)
B.[ ,1]
C.( ,1)
D.( ,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若0<x< ,則2x與3sin x的大小關(guān)系(
A.2x>3sin x
B.2x<3sin x
C.2x=3sin x
D.與x的取值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)已知點,曲線在點 處的切線與直線交于點,求為坐標原點)的面積最小時的值,并求出面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3﹣2x2﹣4x.
(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[﹣1,4]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某算法的程序框圖如圖所示,其中輸入的變量1,2,3,…,2424個整數(shù)中等可能隨機產(chǎn)生.

()分別求出按程序框圖正確編程運行時輸出的值為的概率 (=1,2,3);

()甲、乙兩同學(xué)依據(jù)自己對程序框圖的理解,各自編寫程序重復(fù)運行n次后,統(tǒng)計記錄了輸出的值為 (=1,2,3)的頻數(shù).以下是甲、乙所作頻數(shù)統(tǒng)計表的部分數(shù)據(jù).

甲的頻數(shù)統(tǒng)計表(部分)

運行

次數(shù)n

輸出y的值

1的頻數(shù)

輸出y的值

2的頻數(shù)

輸出y的值

3的頻數(shù)

30

14

6

10

2 100

1 027

376

697

乙的頻數(shù)統(tǒng)計表(部分)

運行

次數(shù)n

輸出y的值

1的頻數(shù)

輸出y的值

2的頻數(shù)

輸出y的值

3的頻數(shù)

30

12

11

7

2 100

1 051

696

353

n=2100,根據(jù)表中的數(shù)據(jù),分別寫出甲、乙所編程序各自輸出的值為 (=1,2,3)的頻率(用分數(shù)表示),并判斷兩位同學(xué)中哪一位所編寫程序符合算法要求的可能性較大.

()將按程序框圖正確編寫的程序運行3,求輸出的值為2的次數(shù)ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習冊答案