在△ABC中,若cosA•cosB-sinA•sinB>0,則這個三角形一定是( 。
A、銳角三角形
B、鈍角三角形
C、直角三角形
D、以上都有可能
考點:三角形的形狀判斷
專題:解三角形
分析:利用兩角和的余弦公式及三角函數(shù)的誘導公式易得cosC<0,從而可得答案.
解答: 解:在△ABC中,∵cosA•cosB-sinA•sinB=cos(A+B)=-cosC>0,
∴cosC<0,
∴這個三角形一定是鈍角三角形,
故選:B.
點評:本題考查三角形的形狀判斷,著重考查兩角和的余弦公式的逆用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x2+1(0≤x≤4)
2x(-4≤x<0)
,它的反函數(shù)為y=f-1(x),則f-1(4)+f-1
1
4
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={a1,a2,a3,…,an},記和ai+aj(1≤i<j≤n)中所有不同值的個數(shù)為M(A).對于集合B={b1,b2,b3,…,bn},若實數(shù)b1,b2,b3,…,bn成等差數(shù)列,則M(B)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}若a3•a8=8則數(shù)列{an}前10項的積Tn等于( 。
A、230
B、215
C、(
1
2
15
D、216

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于空間中的三條不同的直線,有下列三個條件:
①三條直線兩兩平行;
②三條直線共點;
③有兩條直線平行,第三條直線和這兩條直線都相交.
其中,能作為這三條直線共面的充分條件的有( 。
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等腰梯形ABCD中,AB∥CD,AB=2BC=2CD=2,E是AB的中點,F(xiàn)是DE的中點,沿直線DE將△ADE翻折成棱錐A-BCDE,當棱錐A-BCDE的體積最大時,則直線AB與CF所成角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正方形ABCD的邊長為4,點E在邊AB上,F(xiàn)、G在邊BC上,且AE=BF=2,BG=3.將此正方形沿DE、DF折起,使點A、C重合于點P,則三棱錐P-DEF中EF與DG所成角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若0<x<
1
2
,則x(1-2x)有( 。
A、最小值
1
4
B、最小值
1
8
C、最大值
1
4
D、最大值
1
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐S-ABC中,已知點E、F、G分別為棱SA、SC、BC的中點,過點E、F、G三點的平面與線段AB的交點為H.
(1)求證:AC∥平面EFGH;
(2)求證:AC∥HG.

查看答案和解析>>

同步練習冊答案