設(shè)函數(shù)g(x)=x+
1
x+1
,f(x)=
g(x)+x(x<g(x))
g(x)-x(x≥g(x))
,則f(x)的值域是
 
考點(diǎn):分段函數(shù)的應(yīng)用,函數(shù)的值域
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:分別求出分段函數(shù)的各段的自變量的范圍,運(yùn)用基本不等式即可求出最值,再求并集即可.
解答: 解:當(dāng)x<g(x)即x<x+
1
x+1
,即有x>-1,f(x)=g(x)+x=2x+
1
x+1

=2(x+1)+
1
x+1
-2≥2
2(x+1)•
1
x+1
-2=2
2
-2;
當(dāng)x≥g(x)即x≥x+
1
x+1
,即有x<-1,f(x)=g(x)-x=
1
x+1
<0,
則f(x)的值域?yàn)椋?∞,0)∪[2
2
-2,+∞).
故答案為:(-∞,0)∪[2
2
-2,+∞).
點(diǎn)評:本題考查分段函數(shù)的運(yùn)用,考查函數(shù)的值域的求法,注意分別求各段的范圍,再求并集,考查運(yùn)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某程序框圖如圖所示,現(xiàn)輸入下列四個(gè)函數(shù):f(x)=
1
x
,f(x)=x2+x,f(x)=log3(x2+1),f(x)=2x-2-x,則輸出的函數(shù)是( 。
A、f(x)=
1
x
B、f(x)=x2+x
C、f(x)=log3(x2+1)
D、f(x)=2x-2-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(
1
2
)x+
3
4
x≥2
log2x0<x<2
,則f(f(2))=( 。
A、0
B、
5
4
C、1
D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
4
+
y2
b2
=1(0<b<2)的左、右頂點(diǎn)分別為A,B,且與雙曲線
x2
2
-y2=1有相同的焦點(diǎn),圓T:x2+y2=4上有一動(dòng)點(diǎn)P,P在x軸上方,M(1,0)為x軸上一點(diǎn).直線PA交橢圓C于D點(diǎn),聯(lián)結(jié)DM,PB.
(1)若
AD
DM
=0,求△ADM的面積;
(2)若直線PB,DM的斜率存在且分別為k1,k2,若k1=λk2,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為征求個(gè)人所得稅修改建議,某機(jī)構(gòu)對當(dāng)?shù)鼐用竦脑率杖胝{(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖如圖D10-3.
(1)求居民月收入在[3000,4000]的頻率;
(2)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這10000人中用分層抽樣方法抽出100人作進(jìn)一步分析,則月收入在[2500,3000)的這段應(yīng)抽多少人?
(3)若將頻率視為概率,對該地居民隨機(jī)抽三人進(jìn)行預(yù)測,記這三人月收入不低于3000元的人數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

斜率為
2
2
的直線l與橢圓
x2
a2
+
y2
b2
=1(a>b>0)交于不同的兩點(diǎn)A、B.若點(diǎn)A、B在x軸上的射影恰好為橢圓的兩個(gè)焦點(diǎn).
(1)求橢圓的離心率;
(2)P是橢圓上的動(dòng)點(diǎn),若△PAB面積最大值是4
2
,求該橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知C=
4
,cos2B=
1
2
+sin2A.
(Ⅰ)求tanB;
(Ⅱ)若BC=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A點(diǎn)坐標(biāo)(-a,0),B點(diǎn)坐標(biāo)(a,0),雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0),P(x,y)為雙曲線上一點(diǎn)(x≠±a),則kPA•kPB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算(a
8
5
b-
6
5
)-
1
2
5a4
÷
5b3
(a•b≠0)=
 

查看答案和解析>>

同步練習(xí)冊答案